![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppgtmd | Structured version Visualization version GIF version |
Description: The opposite of a topological monoid is a topological monoid. (Contributed by Mario Carneiro, 19-Sep-2015.) |
Ref | Expression |
---|---|
oppgtmd.1 | ⊢ 𝑂 = (oppg‘𝐺) |
Ref | Expression |
---|---|
oppgtmd | ⊢ (𝐺 ∈ TopMnd → 𝑂 ∈ TopMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tmdmnd 21879 | . . 3 ⊢ (𝐺 ∈ TopMnd → 𝐺 ∈ Mnd) | |
2 | oppgtmd.1 | . . . 4 ⊢ 𝑂 = (oppg‘𝐺) | |
3 | 2 | oppgmnd 17784 | . . 3 ⊢ (𝐺 ∈ Mnd → 𝑂 ∈ Mnd) |
4 | 1, 3 | syl 17 | . 2 ⊢ (𝐺 ∈ TopMnd → 𝑂 ∈ Mnd) |
5 | eqid 2622 | . . . 4 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝐺) | |
6 | eqid 2622 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
7 | 5, 6 | tmdtopon 21885 | . . 3 ⊢ (𝐺 ∈ TopMnd → (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺))) |
8 | 2, 6 | oppgbas 17781 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝑂) |
9 | 2, 5 | oppgtopn 17783 | . . . 4 ⊢ (TopOpen‘𝐺) = (TopOpen‘𝑂) |
10 | 8, 9 | istps 20738 | . . 3 ⊢ (𝑂 ∈ TopSp ↔ (TopOpen‘𝐺) ∈ (TopOn‘(Base‘𝐺))) |
11 | 7, 10 | sylibr 224 | . 2 ⊢ (𝐺 ∈ TopMnd → 𝑂 ∈ TopSp) |
12 | eqid 2622 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
13 | id 22 | . . 3 ⊢ (𝐺 ∈ TopMnd → 𝐺 ∈ TopMnd) | |
14 | 7, 7 | cnmpt2nd 21472 | . . 3 ⊢ (𝐺 ∈ TopMnd → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑦) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺))) |
15 | 7, 7 | cnmpt1st 21471 | . . 3 ⊢ (𝐺 ∈ TopMnd → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ 𝑥) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺))) |
16 | 5, 12, 13, 7, 7, 14, 15 | cnmpt2plusg 21892 | . 2 ⊢ (𝐺 ∈ TopMnd → (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑦(+g‘𝐺)𝑥)) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺))) |
17 | eqid 2622 | . . . . 5 ⊢ (+g‘𝑂) = (+g‘𝑂) | |
18 | eqid 2622 | . . . . 5 ⊢ (+𝑓‘𝑂) = (+𝑓‘𝑂) | |
19 | 8, 17, 18 | plusffval 17247 | . . . 4 ⊢ (+𝑓‘𝑂) = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝑂)𝑦)) |
20 | 12, 2, 17 | oppgplus 17779 | . . . . 5 ⊢ (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝐺)𝑥) |
21 | 6, 6, 20 | mpt2eq123i 6718 | . . . 4 ⊢ (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑥(+g‘𝑂)𝑦)) = (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑦(+g‘𝐺)𝑥)) |
22 | 19, 21 | eqtr2i 2645 | . . 3 ⊢ (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑦(+g‘𝐺)𝑥)) = (+𝑓‘𝑂) |
23 | 22, 9 | istmd 21878 | . 2 ⊢ (𝑂 ∈ TopMnd ↔ (𝑂 ∈ Mnd ∧ 𝑂 ∈ TopSp ∧ (𝑥 ∈ (Base‘𝐺), 𝑦 ∈ (Base‘𝐺) ↦ (𝑦(+g‘𝐺)𝑥)) ∈ (((TopOpen‘𝐺) ×t (TopOpen‘𝐺)) Cn (TopOpen‘𝐺)))) |
24 | 4, 11, 16, 23 | syl3anbrc 1246 | 1 ⊢ (𝐺 ∈ TopMnd → 𝑂 ∈ TopMnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 ‘cfv 5888 (class class class)co 6650 ↦ cmpt2 6652 Basecbs 15857 +gcplusg 15941 TopOpenctopn 16082 +𝑓cplusf 17239 Mndcmnd 17294 oppgcoppg 17775 TopOnctopon 20715 TopSpctps 20736 Cn ccn 21028 ×t ctx 21363 TopMndctmd 21874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-plusg 15954 df-tset 15960 df-rest 16083 df-topn 16084 df-0g 16102 df-topgen 16104 df-plusf 17241 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-oppg 17776 df-top 20699 df-topon 20716 df-topsp 20737 df-bases 20750 df-cn 21031 df-tx 21365 df-tmd 21876 |
This theorem is referenced by: oppgtgp 21902 |
Copyright terms: Public domain | W3C validator |