![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > raleqi | Structured version Visualization version GIF version |
Description: Equality inference for restricted universal qualifier. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
raleq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
raleqi | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | raleq 3138 | . 2 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1483 ∀wral 2912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 |
This theorem is referenced by: ralrab2 3372 ralprg 4234 raltpg 4236 ralxp 5263 f12dfv 6529 f13dfv 6530 ralrnmpt2 6775 ovmptss 7258 ixpfi2 8264 dffi3 8337 dfoi 8416 fseqenlem1 8847 kmlem12 8983 fzprval 12401 fztpval 12402 hashbc 13237 2prm 15405 prmreclem2 15621 xpsfrnel 16223 xpsle 16241 gsumwspan 17383 sgrp2rid2 17413 psgnunilem3 17916 pmtrsn 17939 ply1coe 19666 cply1coe0bi 19670 islinds2 20152 m2cpminvid2lem 20559 basdif0 20757 ordtbaslem 20992 ptbasfi 21384 ptcnplem 21424 ptrescn 21442 flftg 21800 ust0 22023 minveclem1 23195 minveclem3b 23199 minveclem6 23205 iblcnlem1 23554 ellimc2 23641 ftalem3 24801 dchreq 24983 pntlem3 25298 istrkg2ld 25359 istrkg3ld 25360 lfuhgr1v0e 26146 cplgr0 26321 wlkp1lem8 26577 usgr2pthlem 26659 pthdlem1 26662 pthd 26665 crctcshwlkn0 26713 2wlkdlem4 26824 2wlkdlem5 26825 2pthdlem1 26826 2wlkdlem10 26831 rusgrnumwwlkl1 26863 0ewlk 26975 0wlk 26977 wlk2v2elem2 27016 3wlkdlem4 27022 3wlkdlem5 27023 3pthdlem1 27024 3wlkdlem10 27029 minvecolem1 27730 minvecolem5 27737 minvecolem6 27738 cdj3lem3b 29299 prsiga 30194 hfext 32290 filnetlem4 32376 relowlssretop 33211 relowlpssretop 33212 elghomOLD 33686 iscrngo2 33796 tendoset 36047 fnwe2lem2 37621 eliuniincex 39292 eliincex 39293 uzub 39658 liminflelimsuplem 40007 xlimbr 40053 subsaliuncl 40576 |
Copyright terms: Public domain | W3C validator |