| Step | Hyp | Ref
| Expression |
| 1 | | knatar.1 |
. . 3
⊢ 𝑋 = ∩
{𝑧 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑧) ⊆ 𝑧} |
| 2 | | pwidg 4173 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) |
| 3 | 2 | 3ad2ant1 1082 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → 𝐴 ∈ 𝒫 𝐴) |
| 4 | | simp2 1062 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → (𝐹‘𝐴) ⊆ 𝐴) |
| 5 | | fveq2 6191 |
. . . . . 6
⊢ (𝑧 = 𝐴 → (𝐹‘𝑧) = (𝐹‘𝐴)) |
| 6 | | id 22 |
. . . . . 6
⊢ (𝑧 = 𝐴 → 𝑧 = 𝐴) |
| 7 | 5, 6 | sseq12d 3634 |
. . . . 5
⊢ (𝑧 = 𝐴 → ((𝐹‘𝑧) ⊆ 𝑧 ↔ (𝐹‘𝐴) ⊆ 𝐴)) |
| 8 | 7 | intminss 4503 |
. . . 4
⊢ ((𝐴 ∈ 𝒫 𝐴 ∧ (𝐹‘𝐴) ⊆ 𝐴) → ∩ {𝑧 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑧) ⊆ 𝑧} ⊆ 𝐴) |
| 9 | 3, 4, 8 | syl2anc 693 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → ∩ {𝑧 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑧) ⊆ 𝑧} ⊆ 𝐴) |
| 10 | 1, 9 | syl5eqss 3649 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → 𝑋 ⊆ 𝐴) |
| 11 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑤 → (𝐹‘𝑧) = (𝐹‘𝑤)) |
| 12 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑤 → 𝑧 = 𝑤) |
| 13 | 11, 12 | sseq12d 3634 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑤 → ((𝐹‘𝑧) ⊆ 𝑧 ↔ (𝐹‘𝑤) ⊆ 𝑤)) |
| 14 | 13 | intminss 4503 |
. . . . . . . . . . . 12
⊢ ((𝑤 ∈ 𝒫 𝐴 ∧ (𝐹‘𝑤) ⊆ 𝑤) → ∩ {𝑧 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑧) ⊆ 𝑧} ⊆ 𝑤) |
| 15 | 14 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝐹‘𝑤) ⊆ 𝑤)) → ∩ {𝑧 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑧) ⊆ 𝑧} ⊆ 𝑤) |
| 16 | 1, 15 | syl5eqss 3649 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝐹‘𝑤) ⊆ 𝑤)) → 𝑋 ⊆ 𝑤) |
| 17 | | vex 3203 |
. . . . . . . . . . 11
⊢ 𝑤 ∈ V |
| 18 | 17 | elpw2 4828 |
. . . . . . . . . 10
⊢ (𝑋 ∈ 𝒫 𝑤 ↔ 𝑋 ⊆ 𝑤) |
| 19 | 16, 18 | sylibr 224 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝐹‘𝑤) ⊆ 𝑤)) → 𝑋 ∈ 𝒫 𝑤) |
| 20 | | simprl 794 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝐹‘𝑤) ⊆ 𝑤)) → 𝑤 ∈ 𝒫 𝐴) |
| 21 | | simpl3 1066 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝐹‘𝑤) ⊆ 𝑤)) → ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) |
| 22 | | pweq 4161 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → 𝒫 𝑥 = 𝒫 𝑤) |
| 23 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → (𝐹‘𝑥) = (𝐹‘𝑤)) |
| 24 | 23 | sseq2d 3633 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → ((𝐹‘𝑦) ⊆ (𝐹‘𝑥) ↔ (𝐹‘𝑦) ⊆ (𝐹‘𝑤))) |
| 25 | 22, 24 | raleqbidv 3152 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → (∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥) ↔ ∀𝑦 ∈ 𝒫 𝑤(𝐹‘𝑦) ⊆ (𝐹‘𝑤))) |
| 26 | 25 | rspcv 3305 |
. . . . . . . . . 10
⊢ (𝑤 ∈ 𝒫 𝐴 → (∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥) → ∀𝑦 ∈ 𝒫 𝑤(𝐹‘𝑦) ⊆ (𝐹‘𝑤))) |
| 27 | 20, 21, 26 | sylc 65 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝐹‘𝑤) ⊆ 𝑤)) → ∀𝑦 ∈ 𝒫 𝑤(𝐹‘𝑦) ⊆ (𝐹‘𝑤)) |
| 28 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑋 → (𝐹‘𝑦) = (𝐹‘𝑋)) |
| 29 | 28 | sseq1d 3632 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑋 → ((𝐹‘𝑦) ⊆ (𝐹‘𝑤) ↔ (𝐹‘𝑋) ⊆ (𝐹‘𝑤))) |
| 30 | 29 | rspcv 3305 |
. . . . . . . . 9
⊢ (𝑋 ∈ 𝒫 𝑤 → (∀𝑦 ∈ 𝒫 𝑤(𝐹‘𝑦) ⊆ (𝐹‘𝑤) → (𝐹‘𝑋) ⊆ (𝐹‘𝑤))) |
| 31 | 19, 27, 30 | sylc 65 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝐹‘𝑤) ⊆ 𝑤)) → (𝐹‘𝑋) ⊆ (𝐹‘𝑤)) |
| 32 | | simprr 796 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝐹‘𝑤) ⊆ 𝑤)) → (𝐹‘𝑤) ⊆ 𝑤) |
| 33 | 31, 32 | sstrd 3613 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝐹‘𝑤) ⊆ 𝑤)) → (𝐹‘𝑋) ⊆ 𝑤) |
| 34 | 33 | expr 643 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) ∧ 𝑤 ∈ 𝒫 𝐴) → ((𝐹‘𝑤) ⊆ 𝑤 → (𝐹‘𝑋) ⊆ 𝑤)) |
| 35 | 34 | ralrimiva 2966 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → ∀𝑤 ∈ 𝒫 𝐴((𝐹‘𝑤) ⊆ 𝑤 → (𝐹‘𝑋) ⊆ 𝑤)) |
| 36 | | ssintrab 4500 |
. . . . 5
⊢ ((𝐹‘𝑋) ⊆ ∩
{𝑤 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑤) ⊆ 𝑤} ↔ ∀𝑤 ∈ 𝒫 𝐴((𝐹‘𝑤) ⊆ 𝑤 → (𝐹‘𝑋) ⊆ 𝑤)) |
| 37 | 35, 36 | sylibr 224 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → (𝐹‘𝑋) ⊆ ∩
{𝑤 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑤) ⊆ 𝑤}) |
| 38 | 13 | cbvrabv 3199 |
. . . . . 6
⊢ {𝑧 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑧) ⊆ 𝑧} = {𝑤 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑤) ⊆ 𝑤} |
| 39 | 38 | inteqi 4479 |
. . . . 5
⊢ ∩ {𝑧
∈ 𝒫 𝐴 ∣
(𝐹‘𝑧) ⊆ 𝑧} = ∩ {𝑤 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑤) ⊆ 𝑤} |
| 40 | 1, 39 | eqtri 2644 |
. . . 4
⊢ 𝑋 = ∩
{𝑤 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑤) ⊆ 𝑤} |
| 41 | 37, 40 | syl6sseqr 3652 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → (𝐹‘𝑋) ⊆ 𝑋) |
| 42 | 3, 10 | sselpwd 4807 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → 𝑋 ∈ 𝒫 𝐴) |
| 43 | | simp3 1063 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) |
| 44 | | pweq 4161 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) |
| 45 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) |
| 46 | 45 | sseq2d 3633 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐴 → ((𝐹‘𝑦) ⊆ (𝐹‘𝑥) ↔ (𝐹‘𝑦) ⊆ (𝐹‘𝐴))) |
| 47 | 44, 46 | raleqbidv 3152 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥) ↔ ∀𝑦 ∈ 𝒫 𝐴(𝐹‘𝑦) ⊆ (𝐹‘𝐴))) |
| 48 | 47 | rspcv 3305 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝒫 𝐴 → (∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥) → ∀𝑦 ∈ 𝒫 𝐴(𝐹‘𝑦) ⊆ (𝐹‘𝐴))) |
| 49 | 3, 43, 48 | sylc 65 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → ∀𝑦 ∈ 𝒫 𝐴(𝐹‘𝑦) ⊆ (𝐹‘𝐴)) |
| 50 | 28 | sseq1d 3632 |
. . . . . . . . 9
⊢ (𝑦 = 𝑋 → ((𝐹‘𝑦) ⊆ (𝐹‘𝐴) ↔ (𝐹‘𝑋) ⊆ (𝐹‘𝐴))) |
| 51 | 50 | rspcv 3305 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝒫 𝐴 → (∀𝑦 ∈ 𝒫 𝐴(𝐹‘𝑦) ⊆ (𝐹‘𝐴) → (𝐹‘𝑋) ⊆ (𝐹‘𝐴))) |
| 52 | 42, 49, 51 | sylc 65 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → (𝐹‘𝑋) ⊆ (𝐹‘𝐴)) |
| 53 | 52, 4 | sstrd 3613 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → (𝐹‘𝑋) ⊆ 𝐴) |
| 54 | | fvex 6201 |
. . . . . . 7
⊢ (𝐹‘𝑋) ∈ V |
| 55 | 54 | elpw 4164 |
. . . . . 6
⊢ ((𝐹‘𝑋) ∈ 𝒫 𝐴 ↔ (𝐹‘𝑋) ⊆ 𝐴) |
| 56 | 53, 55 | sylibr 224 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → (𝐹‘𝑋) ∈ 𝒫 𝐴) |
| 57 | 54 | elpw 4164 |
. . . . . . 7
⊢ ((𝐹‘𝑋) ∈ 𝒫 𝑋 ↔ (𝐹‘𝑋) ⊆ 𝑋) |
| 58 | 41, 57 | sylibr 224 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → (𝐹‘𝑋) ∈ 𝒫 𝑋) |
| 59 | | pweq 4161 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → 𝒫 𝑥 = 𝒫 𝑋) |
| 60 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) |
| 61 | 60 | sseq2d 3633 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → ((𝐹‘𝑦) ⊆ (𝐹‘𝑥) ↔ (𝐹‘𝑦) ⊆ (𝐹‘𝑋))) |
| 62 | 59, 61 | raleqbidv 3152 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥) ↔ ∀𝑦 ∈ 𝒫 𝑋(𝐹‘𝑦) ⊆ (𝐹‘𝑋))) |
| 63 | 62 | rspcv 3305 |
. . . . . . 7
⊢ (𝑋 ∈ 𝒫 𝐴 → (∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥) → ∀𝑦 ∈ 𝒫 𝑋(𝐹‘𝑦) ⊆ (𝐹‘𝑋))) |
| 64 | 42, 43, 63 | sylc 65 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → ∀𝑦 ∈ 𝒫 𝑋(𝐹‘𝑦) ⊆ (𝐹‘𝑋)) |
| 65 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑦 = (𝐹‘𝑋) → (𝐹‘𝑦) = (𝐹‘(𝐹‘𝑋))) |
| 66 | 65 | sseq1d 3632 |
. . . . . . 7
⊢ (𝑦 = (𝐹‘𝑋) → ((𝐹‘𝑦) ⊆ (𝐹‘𝑋) ↔ (𝐹‘(𝐹‘𝑋)) ⊆ (𝐹‘𝑋))) |
| 67 | 66 | rspcv 3305 |
. . . . . 6
⊢ ((𝐹‘𝑋) ∈ 𝒫 𝑋 → (∀𝑦 ∈ 𝒫 𝑋(𝐹‘𝑦) ⊆ (𝐹‘𝑋) → (𝐹‘(𝐹‘𝑋)) ⊆ (𝐹‘𝑋))) |
| 68 | 58, 64, 67 | sylc 65 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → (𝐹‘(𝐹‘𝑋)) ⊆ (𝐹‘𝑋)) |
| 69 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑤 = (𝐹‘𝑋) → (𝐹‘𝑤) = (𝐹‘(𝐹‘𝑋))) |
| 70 | | id 22 |
. . . . . . 7
⊢ (𝑤 = (𝐹‘𝑋) → 𝑤 = (𝐹‘𝑋)) |
| 71 | 69, 70 | sseq12d 3634 |
. . . . . 6
⊢ (𝑤 = (𝐹‘𝑋) → ((𝐹‘𝑤) ⊆ 𝑤 ↔ (𝐹‘(𝐹‘𝑋)) ⊆ (𝐹‘𝑋))) |
| 72 | 71 | intminss 4503 |
. . . . 5
⊢ (((𝐹‘𝑋) ∈ 𝒫 𝐴 ∧ (𝐹‘(𝐹‘𝑋)) ⊆ (𝐹‘𝑋)) → ∩
{𝑤 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑤) ⊆ 𝑤} ⊆ (𝐹‘𝑋)) |
| 73 | 56, 68, 72 | syl2anc 693 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → ∩ {𝑤 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑤) ⊆ 𝑤} ⊆ (𝐹‘𝑋)) |
| 74 | 40, 73 | syl5eqss 3649 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → 𝑋 ⊆ (𝐹‘𝑋)) |
| 75 | 41, 74 | eqssd 3620 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → (𝐹‘𝑋) = 𝑋) |
| 76 | 10, 75 | jca 554 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → (𝑋 ⊆ 𝐴 ∧ (𝐹‘𝑋) = 𝑋)) |