Step | Hyp | Ref
| Expression |
1 | | knatar.1 |
. . 3
⊢ 𝑋 = ∩
{𝑧 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑧) ⊆ 𝑧} |
2 | | pwidg 4173 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) |
3 | 2 | 3ad2ant1 1082 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → 𝐴 ∈ 𝒫 𝐴) |
4 | | simp2 1062 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → (𝐹‘𝐴) ⊆ 𝐴) |
5 | | fveq2 6191 |
. . . . . 6
⊢ (𝑧 = 𝐴 → (𝐹‘𝑧) = (𝐹‘𝐴)) |
6 | | id 22 |
. . . . . 6
⊢ (𝑧 = 𝐴 → 𝑧 = 𝐴) |
7 | 5, 6 | sseq12d 3634 |
. . . . 5
⊢ (𝑧 = 𝐴 → ((𝐹‘𝑧) ⊆ 𝑧 ↔ (𝐹‘𝐴) ⊆ 𝐴)) |
8 | 7 | intminss 4503 |
. . . 4
⊢ ((𝐴 ∈ 𝒫 𝐴 ∧ (𝐹‘𝐴) ⊆ 𝐴) → ∩ {𝑧 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑧) ⊆ 𝑧} ⊆ 𝐴) |
9 | 3, 4, 8 | syl2anc 693 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → ∩ {𝑧 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑧) ⊆ 𝑧} ⊆ 𝐴) |
10 | 1, 9 | syl5eqss 3649 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → 𝑋 ⊆ 𝐴) |
11 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑤 → (𝐹‘𝑧) = (𝐹‘𝑤)) |
12 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑤 → 𝑧 = 𝑤) |
13 | 11, 12 | sseq12d 3634 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑤 → ((𝐹‘𝑧) ⊆ 𝑧 ↔ (𝐹‘𝑤) ⊆ 𝑤)) |
14 | 13 | intminss 4503 |
. . . . . . . . . . . 12
⊢ ((𝑤 ∈ 𝒫 𝐴 ∧ (𝐹‘𝑤) ⊆ 𝑤) → ∩ {𝑧 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑧) ⊆ 𝑧} ⊆ 𝑤) |
15 | 14 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝐹‘𝑤) ⊆ 𝑤)) → ∩ {𝑧 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑧) ⊆ 𝑧} ⊆ 𝑤) |
16 | 1, 15 | syl5eqss 3649 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝐹‘𝑤) ⊆ 𝑤)) → 𝑋 ⊆ 𝑤) |
17 | | vex 3203 |
. . . . . . . . . . 11
⊢ 𝑤 ∈ V |
18 | 17 | elpw2 4828 |
. . . . . . . . . 10
⊢ (𝑋 ∈ 𝒫 𝑤 ↔ 𝑋 ⊆ 𝑤) |
19 | 16, 18 | sylibr 224 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝐹‘𝑤) ⊆ 𝑤)) → 𝑋 ∈ 𝒫 𝑤) |
20 | | simprl 794 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝐹‘𝑤) ⊆ 𝑤)) → 𝑤 ∈ 𝒫 𝐴) |
21 | | simpl3 1066 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝐹‘𝑤) ⊆ 𝑤)) → ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) |
22 | | pweq 4161 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → 𝒫 𝑥 = 𝒫 𝑤) |
23 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → (𝐹‘𝑥) = (𝐹‘𝑤)) |
24 | 23 | sseq2d 3633 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → ((𝐹‘𝑦) ⊆ (𝐹‘𝑥) ↔ (𝐹‘𝑦) ⊆ (𝐹‘𝑤))) |
25 | 22, 24 | raleqbidv 3152 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → (∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥) ↔ ∀𝑦 ∈ 𝒫 𝑤(𝐹‘𝑦) ⊆ (𝐹‘𝑤))) |
26 | 25 | rspcv 3305 |
. . . . . . . . . 10
⊢ (𝑤 ∈ 𝒫 𝐴 → (∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥) → ∀𝑦 ∈ 𝒫 𝑤(𝐹‘𝑦) ⊆ (𝐹‘𝑤))) |
27 | 20, 21, 26 | sylc 65 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝐹‘𝑤) ⊆ 𝑤)) → ∀𝑦 ∈ 𝒫 𝑤(𝐹‘𝑦) ⊆ (𝐹‘𝑤)) |
28 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑋 → (𝐹‘𝑦) = (𝐹‘𝑋)) |
29 | 28 | sseq1d 3632 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑋 → ((𝐹‘𝑦) ⊆ (𝐹‘𝑤) ↔ (𝐹‘𝑋) ⊆ (𝐹‘𝑤))) |
30 | 29 | rspcv 3305 |
. . . . . . . . 9
⊢ (𝑋 ∈ 𝒫 𝑤 → (∀𝑦 ∈ 𝒫 𝑤(𝐹‘𝑦) ⊆ (𝐹‘𝑤) → (𝐹‘𝑋) ⊆ (𝐹‘𝑤))) |
31 | 19, 27, 30 | sylc 65 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝐹‘𝑤) ⊆ 𝑤)) → (𝐹‘𝑋) ⊆ (𝐹‘𝑤)) |
32 | | simprr 796 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝐹‘𝑤) ⊆ 𝑤)) → (𝐹‘𝑤) ⊆ 𝑤) |
33 | 31, 32 | sstrd 3613 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) ∧ (𝑤 ∈ 𝒫 𝐴 ∧ (𝐹‘𝑤) ⊆ 𝑤)) → (𝐹‘𝑋) ⊆ 𝑤) |
34 | 33 | expr 643 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) ∧ 𝑤 ∈ 𝒫 𝐴) → ((𝐹‘𝑤) ⊆ 𝑤 → (𝐹‘𝑋) ⊆ 𝑤)) |
35 | 34 | ralrimiva 2966 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → ∀𝑤 ∈ 𝒫 𝐴((𝐹‘𝑤) ⊆ 𝑤 → (𝐹‘𝑋) ⊆ 𝑤)) |
36 | | ssintrab 4500 |
. . . . 5
⊢ ((𝐹‘𝑋) ⊆ ∩
{𝑤 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑤) ⊆ 𝑤} ↔ ∀𝑤 ∈ 𝒫 𝐴((𝐹‘𝑤) ⊆ 𝑤 → (𝐹‘𝑋) ⊆ 𝑤)) |
37 | 35, 36 | sylibr 224 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → (𝐹‘𝑋) ⊆ ∩
{𝑤 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑤) ⊆ 𝑤}) |
38 | 13 | cbvrabv 3199 |
. . . . . 6
⊢ {𝑧 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑧) ⊆ 𝑧} = {𝑤 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑤) ⊆ 𝑤} |
39 | 38 | inteqi 4479 |
. . . . 5
⊢ ∩ {𝑧
∈ 𝒫 𝐴 ∣
(𝐹‘𝑧) ⊆ 𝑧} = ∩ {𝑤 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑤) ⊆ 𝑤} |
40 | 1, 39 | eqtri 2644 |
. . . 4
⊢ 𝑋 = ∩
{𝑤 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑤) ⊆ 𝑤} |
41 | 37, 40 | syl6sseqr 3652 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → (𝐹‘𝑋) ⊆ 𝑋) |
42 | 3, 10 | sselpwd 4807 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → 𝑋 ∈ 𝒫 𝐴) |
43 | | simp3 1063 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) |
44 | | pweq 4161 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) |
45 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) |
46 | 45 | sseq2d 3633 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐴 → ((𝐹‘𝑦) ⊆ (𝐹‘𝑥) ↔ (𝐹‘𝑦) ⊆ (𝐹‘𝐴))) |
47 | 44, 46 | raleqbidv 3152 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥) ↔ ∀𝑦 ∈ 𝒫 𝐴(𝐹‘𝑦) ⊆ (𝐹‘𝐴))) |
48 | 47 | rspcv 3305 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝒫 𝐴 → (∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥) → ∀𝑦 ∈ 𝒫 𝐴(𝐹‘𝑦) ⊆ (𝐹‘𝐴))) |
49 | 3, 43, 48 | sylc 65 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → ∀𝑦 ∈ 𝒫 𝐴(𝐹‘𝑦) ⊆ (𝐹‘𝐴)) |
50 | 28 | sseq1d 3632 |
. . . . . . . . 9
⊢ (𝑦 = 𝑋 → ((𝐹‘𝑦) ⊆ (𝐹‘𝐴) ↔ (𝐹‘𝑋) ⊆ (𝐹‘𝐴))) |
51 | 50 | rspcv 3305 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝒫 𝐴 → (∀𝑦 ∈ 𝒫 𝐴(𝐹‘𝑦) ⊆ (𝐹‘𝐴) → (𝐹‘𝑋) ⊆ (𝐹‘𝐴))) |
52 | 42, 49, 51 | sylc 65 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → (𝐹‘𝑋) ⊆ (𝐹‘𝐴)) |
53 | 52, 4 | sstrd 3613 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → (𝐹‘𝑋) ⊆ 𝐴) |
54 | | fvex 6201 |
. . . . . . 7
⊢ (𝐹‘𝑋) ∈ V |
55 | 54 | elpw 4164 |
. . . . . 6
⊢ ((𝐹‘𝑋) ∈ 𝒫 𝐴 ↔ (𝐹‘𝑋) ⊆ 𝐴) |
56 | 53, 55 | sylibr 224 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → (𝐹‘𝑋) ∈ 𝒫 𝐴) |
57 | 54 | elpw 4164 |
. . . . . . 7
⊢ ((𝐹‘𝑋) ∈ 𝒫 𝑋 ↔ (𝐹‘𝑋) ⊆ 𝑋) |
58 | 41, 57 | sylibr 224 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → (𝐹‘𝑋) ∈ 𝒫 𝑋) |
59 | | pweq 4161 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → 𝒫 𝑥 = 𝒫 𝑋) |
60 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) |
61 | 60 | sseq2d 3633 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → ((𝐹‘𝑦) ⊆ (𝐹‘𝑥) ↔ (𝐹‘𝑦) ⊆ (𝐹‘𝑋))) |
62 | 59, 61 | raleqbidv 3152 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥) ↔ ∀𝑦 ∈ 𝒫 𝑋(𝐹‘𝑦) ⊆ (𝐹‘𝑋))) |
63 | 62 | rspcv 3305 |
. . . . . . 7
⊢ (𝑋 ∈ 𝒫 𝐴 → (∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥) → ∀𝑦 ∈ 𝒫 𝑋(𝐹‘𝑦) ⊆ (𝐹‘𝑋))) |
64 | 42, 43, 63 | sylc 65 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → ∀𝑦 ∈ 𝒫 𝑋(𝐹‘𝑦) ⊆ (𝐹‘𝑋)) |
65 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑦 = (𝐹‘𝑋) → (𝐹‘𝑦) = (𝐹‘(𝐹‘𝑋))) |
66 | 65 | sseq1d 3632 |
. . . . . . 7
⊢ (𝑦 = (𝐹‘𝑋) → ((𝐹‘𝑦) ⊆ (𝐹‘𝑋) ↔ (𝐹‘(𝐹‘𝑋)) ⊆ (𝐹‘𝑋))) |
67 | 66 | rspcv 3305 |
. . . . . 6
⊢ ((𝐹‘𝑋) ∈ 𝒫 𝑋 → (∀𝑦 ∈ 𝒫 𝑋(𝐹‘𝑦) ⊆ (𝐹‘𝑋) → (𝐹‘(𝐹‘𝑋)) ⊆ (𝐹‘𝑋))) |
68 | 58, 64, 67 | sylc 65 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → (𝐹‘(𝐹‘𝑋)) ⊆ (𝐹‘𝑋)) |
69 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑤 = (𝐹‘𝑋) → (𝐹‘𝑤) = (𝐹‘(𝐹‘𝑋))) |
70 | | id 22 |
. . . . . . 7
⊢ (𝑤 = (𝐹‘𝑋) → 𝑤 = (𝐹‘𝑋)) |
71 | 69, 70 | sseq12d 3634 |
. . . . . 6
⊢ (𝑤 = (𝐹‘𝑋) → ((𝐹‘𝑤) ⊆ 𝑤 ↔ (𝐹‘(𝐹‘𝑋)) ⊆ (𝐹‘𝑋))) |
72 | 71 | intminss 4503 |
. . . . 5
⊢ (((𝐹‘𝑋) ∈ 𝒫 𝐴 ∧ (𝐹‘(𝐹‘𝑋)) ⊆ (𝐹‘𝑋)) → ∩
{𝑤 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑤) ⊆ 𝑤} ⊆ (𝐹‘𝑋)) |
73 | 56, 68, 72 | syl2anc 693 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → ∩ {𝑤 ∈ 𝒫 𝐴 ∣ (𝐹‘𝑤) ⊆ 𝑤} ⊆ (𝐹‘𝑋)) |
74 | 40, 73 | syl5eqss 3649 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → 𝑋 ⊆ (𝐹‘𝑋)) |
75 | 41, 74 | eqssd 3620 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → (𝐹‘𝑋) = 𝑋) |
76 | 10, 75 | jca 554 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹‘𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴∀𝑦 ∈ 𝒫 𝑥(𝐹‘𝑦) ⊆ (𝐹‘𝑥)) → (𝑋 ⊆ 𝐴 ∧ (𝐹‘𝑋) = 𝑋)) |