MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  knatar Structured version   Visualization version   Unicode version

Theorem knatar 6607
Description: The Knaster-Tarski theorem says that every monotone function over a complete lattice has a (least) fixpoint. Here we specialize this theorem to the case when the lattice is the powerset lattice  ~P A. (Contributed by Mario Carneiro, 11-Jun-2015.)
Hypothesis
Ref Expression
knatar.1  |-  X  = 
|^| { z  e.  ~P A  |  ( F `  z )  C_  z }
Assertion
Ref Expression
knatar  |-  ( ( A  e.  V  /\  ( F `  A ) 
C_  A  /\  A. x  e.  ~P  A A. y  e.  ~P  x ( F `  y )  C_  ( F `  x )
)  ->  ( X  C_  A  /\  ( F `
 X )  =  X ) )
Distinct variable groups:    x, y,
z, A    x, F, y, z    x, X, y
Allowed substitution hints:    V( x, y, z)    X( z)

Proof of Theorem knatar
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 knatar.1 . . 3  |-  X  = 
|^| { z  e.  ~P A  |  ( F `  z )  C_  z }
2 pwidg 4173 . . . . 5  |-  ( A  e.  V  ->  A  e.  ~P A )
323ad2ant1 1082 . . . 4  |-  ( ( A  e.  V  /\  ( F `  A ) 
C_  A  /\  A. x  e.  ~P  A A. y  e.  ~P  x ( F `  y )  C_  ( F `  x )
)  ->  A  e.  ~P A )
4 simp2 1062 . . . 4  |-  ( ( A  e.  V  /\  ( F `  A ) 
C_  A  /\  A. x  e.  ~P  A A. y  e.  ~P  x ( F `  y )  C_  ( F `  x )
)  ->  ( F `  A )  C_  A
)
5 fveq2 6191 . . . . . 6  |-  ( z  =  A  ->  ( F `  z )  =  ( F `  A ) )
6 id 22 . . . . . 6  |-  ( z  =  A  ->  z  =  A )
75, 6sseq12d 3634 . . . . 5  |-  ( z  =  A  ->  (
( F `  z
)  C_  z  <->  ( F `  A )  C_  A
) )
87intminss 4503 . . . 4  |-  ( ( A  e.  ~P A  /\  ( F `  A
)  C_  A )  ->  |^| { z  e. 
~P A  |  ( F `  z ) 
C_  z }  C_  A )
93, 4, 8syl2anc 693 . . 3  |-  ( ( A  e.  V  /\  ( F `  A ) 
C_  A  /\  A. x  e.  ~P  A A. y  e.  ~P  x ( F `  y )  C_  ( F `  x )
)  ->  |^| { z  e.  ~P A  | 
( F `  z
)  C_  z }  C_  A )
101, 9syl5eqss 3649 . 2  |-  ( ( A  e.  V  /\  ( F `  A ) 
C_  A  /\  A. x  e.  ~P  A A. y  e.  ~P  x ( F `  y )  C_  ( F `  x )
)  ->  X  C_  A
)
11 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( z  =  w  ->  ( F `  z )  =  ( F `  w ) )
12 id 22 . . . . . . . . . . . . . 14  |-  ( z  =  w  ->  z  =  w )
1311, 12sseq12d 3634 . . . . . . . . . . . . 13  |-  ( z  =  w  ->  (
( F `  z
)  C_  z  <->  ( F `  w )  C_  w
) )
1413intminss 4503 . . . . . . . . . . . 12  |-  ( ( w  e.  ~P A  /\  ( F `  w
)  C_  w )  ->  |^| { z  e. 
~P A  |  ( F `  z ) 
C_  z }  C_  w )
1514adantl 482 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  ( F `  A
)  C_  A  /\  A. x  e.  ~P  A A. y  e.  ~P  x ( F `  y )  C_  ( F `  x )
)  /\  ( w  e.  ~P A  /\  ( F `  w )  C_  w ) )  ->  |^| { z  e.  ~P A  |  ( F `  z )  C_  z }  C_  w )
161, 15syl5eqss 3649 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  ( F `  A
)  C_  A  /\  A. x  e.  ~P  A A. y  e.  ~P  x ( F `  y )  C_  ( F `  x )
)  /\  ( w  e.  ~P A  /\  ( F `  w )  C_  w ) )  ->  X  C_  w )
17 vex 3203 . . . . . . . . . . 11  |-  w  e. 
_V
1817elpw2 4828 . . . . . . . . . 10  |-  ( X  e.  ~P w  <->  X  C_  w
)
1916, 18sylibr 224 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  ( F `  A
)  C_  A  /\  A. x  e.  ~P  A A. y  e.  ~P  x ( F `  y )  C_  ( F `  x )
)  /\  ( w  e.  ~P A  /\  ( F `  w )  C_  w ) )  ->  X  e.  ~P w
)
20 simprl 794 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  ( F `  A
)  C_  A  /\  A. x  e.  ~P  A A. y  e.  ~P  x ( F `  y )  C_  ( F `  x )
)  /\  ( w  e.  ~P A  /\  ( F `  w )  C_  w ) )  ->  w  e.  ~P A
)
21 simpl3 1066 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  ( F `  A
)  C_  A  /\  A. x  e.  ~P  A A. y  e.  ~P  x ( F `  y )  C_  ( F `  x )
)  /\  ( w  e.  ~P A  /\  ( F `  w )  C_  w ) )  ->  A. x  e.  ~P  A A. y  e.  ~P  x ( F `  y )  C_  ( F `  x )
)
22 pweq 4161 . . . . . . . . . . . 12  |-  ( x  =  w  ->  ~P x  =  ~P w
)
23 fveq2 6191 . . . . . . . . . . . . 13  |-  ( x  =  w  ->  ( F `  x )  =  ( F `  w ) )
2423sseq2d 3633 . . . . . . . . . . . 12  |-  ( x  =  w  ->  (
( F `  y
)  C_  ( F `  x )  <->  ( F `  y )  C_  ( F `  w )
) )
2522, 24raleqbidv 3152 . . . . . . . . . . 11  |-  ( x  =  w  ->  ( A. y  e.  ~P  x ( F `  y )  C_  ( F `  x )  <->  A. y  e.  ~P  w
( F `  y
)  C_  ( F `  w ) ) )
2625rspcv 3305 . . . . . . . . . 10  |-  ( w  e.  ~P A  -> 
( A. x  e. 
~P  A A. y  e.  ~P  x ( F `
 y )  C_  ( F `  x )  ->  A. y  e.  ~P  w ( F `  y )  C_  ( F `  w )
) )
2720, 21, 26sylc 65 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  ( F `  A
)  C_  A  /\  A. x  e.  ~P  A A. y  e.  ~P  x ( F `  y )  C_  ( F `  x )
)  /\  ( w  e.  ~P A  /\  ( F `  w )  C_  w ) )  ->  A. y  e.  ~P  w ( F `  y )  C_  ( F `  w )
)
28 fveq2 6191 . . . . . . . . . . 11  |-  ( y  =  X  ->  ( F `  y )  =  ( F `  X ) )
2928sseq1d 3632 . . . . . . . . . 10  |-  ( y  =  X  ->  (
( F `  y
)  C_  ( F `  w )  <->  ( F `  X )  C_  ( F `  w )
) )
3029rspcv 3305 . . . . . . . . 9  |-  ( X  e.  ~P w  -> 
( A. y  e. 
~P  w ( F `
 y )  C_  ( F `  w )  ->  ( F `  X )  C_  ( F `  w )
) )
3119, 27, 30sylc 65 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  ( F `  A
)  C_  A  /\  A. x  e.  ~P  A A. y  e.  ~P  x ( F `  y )  C_  ( F `  x )
)  /\  ( w  e.  ~P A  /\  ( F `  w )  C_  w ) )  -> 
( F `  X
)  C_  ( F `  w ) )
32 simprr 796 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  ( F `  A
)  C_  A  /\  A. x  e.  ~P  A A. y  e.  ~P  x ( F `  y )  C_  ( F `  x )
)  /\  ( w  e.  ~P A  /\  ( F `  w )  C_  w ) )  -> 
( F `  w
)  C_  w )
3331, 32sstrd 3613 . . . . . . 7  |-  ( ( ( A  e.  V  /\  ( F `  A
)  C_  A  /\  A. x  e.  ~P  A A. y  e.  ~P  x ( F `  y )  C_  ( F `  x )
)  /\  ( w  e.  ~P A  /\  ( F `  w )  C_  w ) )  -> 
( F `  X
)  C_  w )
3433expr 643 . . . . . 6  |-  ( ( ( A  e.  V  /\  ( F `  A
)  C_  A  /\  A. x  e.  ~P  A A. y  e.  ~P  x ( F `  y )  C_  ( F `  x )
)  /\  w  e.  ~P A )  ->  (
( F `  w
)  C_  w  ->  ( F `  X ) 
C_  w ) )
3534ralrimiva 2966 . . . . 5  |-  ( ( A  e.  V  /\  ( F `  A ) 
C_  A  /\  A. x  e.  ~P  A A. y  e.  ~P  x ( F `  y )  C_  ( F `  x )
)  ->  A. w  e.  ~P  A ( ( F `  w ) 
C_  w  ->  ( F `  X )  C_  w ) )
36 ssintrab 4500 . . . . 5  |-  ( ( F `  X ) 
C_  |^| { w  e. 
~P A  |  ( F `  w ) 
C_  w }  <->  A. w  e.  ~P  A ( ( F `  w ) 
C_  w  ->  ( F `  X )  C_  w ) )
3735, 36sylibr 224 . . . 4  |-  ( ( A  e.  V  /\  ( F `  A ) 
C_  A  /\  A. x  e.  ~P  A A. y  e.  ~P  x ( F `  y )  C_  ( F `  x )
)  ->  ( F `  X )  C_  |^| { w  e.  ~P A  |  ( F `  w ) 
C_  w } )
3813cbvrabv 3199 . . . . . 6  |-  { z  e.  ~P A  | 
( F `  z
)  C_  z }  =  { w  e.  ~P A  |  ( F `  w )  C_  w }
3938inteqi 4479 . . . . 5  |-  |^| { z  e.  ~P A  | 
( F `  z
)  C_  z }  =  |^| { w  e. 
~P A  |  ( F `  w ) 
C_  w }
401, 39eqtri 2644 . . . 4  |-  X  = 
|^| { w  e.  ~P A  |  ( F `  w )  C_  w }
4137, 40syl6sseqr 3652 . . 3  |-  ( ( A  e.  V  /\  ( F `  A ) 
C_  A  /\  A. x  e.  ~P  A A. y  e.  ~P  x ( F `  y )  C_  ( F `  x )
)  ->  ( F `  X )  C_  X
)
423, 10sselpwd 4807 . . . . . . . 8  |-  ( ( A  e.  V  /\  ( F `  A ) 
C_  A  /\  A. x  e.  ~P  A A. y  e.  ~P  x ( F `  y )  C_  ( F `  x )
)  ->  X  e.  ~P A )
43 simp3 1063 . . . . . . . . 9  |-  ( ( A  e.  V  /\  ( F `  A ) 
C_  A  /\  A. x  e.  ~P  A A. y  e.  ~P  x ( F `  y )  C_  ( F `  x )
)  ->  A. x  e.  ~P  A A. y  e.  ~P  x ( F `
 y )  C_  ( F `  x ) )
44 pweq 4161 . . . . . . . . . . 11  |-  ( x  =  A  ->  ~P x  =  ~P A
)
45 fveq2 6191 . . . . . . . . . . . 12  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
4645sseq2d 3633 . . . . . . . . . . 11  |-  ( x  =  A  ->  (
( F `  y
)  C_  ( F `  x )  <->  ( F `  y )  C_  ( F `  A )
) )
4744, 46raleqbidv 3152 . . . . . . . . . 10  |-  ( x  =  A  ->  ( A. y  e.  ~P  x ( F `  y )  C_  ( F `  x )  <->  A. y  e.  ~P  A
( F `  y
)  C_  ( F `  A ) ) )
4847rspcv 3305 . . . . . . . . 9  |-  ( A  e.  ~P A  -> 
( A. x  e. 
~P  A A. y  e.  ~P  x ( F `
 y )  C_  ( F `  x )  ->  A. y  e.  ~P  A ( F `  y )  C_  ( F `  A )
) )
493, 43, 48sylc 65 . . . . . . . 8  |-  ( ( A  e.  V  /\  ( F `  A ) 
C_  A  /\  A. x  e.  ~P  A A. y  e.  ~P  x ( F `  y )  C_  ( F `  x )
)  ->  A. y  e.  ~P  A ( F `
 y )  C_  ( F `  A ) )
5028sseq1d 3632 . . . . . . . . 9  |-  ( y  =  X  ->  (
( F `  y
)  C_  ( F `  A )  <->  ( F `  X )  C_  ( F `  A )
) )
5150rspcv 3305 . . . . . . . 8  |-  ( X  e.  ~P A  -> 
( A. y  e. 
~P  A ( F `
 y )  C_  ( F `  A )  ->  ( F `  X )  C_  ( F `  A )
) )
5242, 49, 51sylc 65 . . . . . . 7  |-  ( ( A  e.  V  /\  ( F `  A ) 
C_  A  /\  A. x  e.  ~P  A A. y  e.  ~P  x ( F `  y )  C_  ( F `  x )
)  ->  ( F `  X )  C_  ( F `  A )
)
5352, 4sstrd 3613 . . . . . 6  |-  ( ( A  e.  V  /\  ( F `  A ) 
C_  A  /\  A. x  e.  ~P  A A. y  e.  ~P  x ( F `  y )  C_  ( F `  x )
)  ->  ( F `  X )  C_  A
)
54 fvex 6201 . . . . . . 7  |-  ( F `
 X )  e. 
_V
5554elpw 4164 . . . . . 6  |-  ( ( F `  X )  e.  ~P A  <->  ( F `  X )  C_  A
)
5653, 55sylibr 224 . . . . 5  |-  ( ( A  e.  V  /\  ( F `  A ) 
C_  A  /\  A. x  e.  ~P  A A. y  e.  ~P  x ( F `  y )  C_  ( F `  x )
)  ->  ( F `  X )  e.  ~P A )
5754elpw 4164 . . . . . . 7  |-  ( ( F `  X )  e.  ~P X  <->  ( F `  X )  C_  X
)
5841, 57sylibr 224 . . . . . 6  |-  ( ( A  e.  V  /\  ( F `  A ) 
C_  A  /\  A. x  e.  ~P  A A. y  e.  ~P  x ( F `  y )  C_  ( F `  x )
)  ->  ( F `  X )  e.  ~P X )
59 pweq 4161 . . . . . . . . 9  |-  ( x  =  X  ->  ~P x  =  ~P X
)
60 fveq2 6191 . . . . . . . . . 10  |-  ( x  =  X  ->  ( F `  x )  =  ( F `  X ) )
6160sseq2d 3633 . . . . . . . . 9  |-  ( x  =  X  ->  (
( F `  y
)  C_  ( F `  x )  <->  ( F `  y )  C_  ( F `  X )
) )
6259, 61raleqbidv 3152 . . . . . . . 8  |-  ( x  =  X  ->  ( A. y  e.  ~P  x ( F `  y )  C_  ( F `  x )  <->  A. y  e.  ~P  X
( F `  y
)  C_  ( F `  X ) ) )
6362rspcv 3305 . . . . . . 7  |-  ( X  e.  ~P A  -> 
( A. x  e. 
~P  A A. y  e.  ~P  x ( F `
 y )  C_  ( F `  x )  ->  A. y  e.  ~P  X ( F `  y )  C_  ( F `  X )
) )
6442, 43, 63sylc 65 . . . . . 6  |-  ( ( A  e.  V  /\  ( F `  A ) 
C_  A  /\  A. x  e.  ~P  A A. y  e.  ~P  x ( F `  y )  C_  ( F `  x )
)  ->  A. y  e.  ~P  X ( F `
 y )  C_  ( F `  X ) )
65 fveq2 6191 . . . . . . . 8  |-  ( y  =  ( F `  X )  ->  ( F `  y )  =  ( F `  ( F `  X ) ) )
6665sseq1d 3632 . . . . . . 7  |-  ( y  =  ( F `  X )  ->  (
( F `  y
)  C_  ( F `  X )  <->  ( F `  ( F `  X
) )  C_  ( F `  X )
) )
6766rspcv 3305 . . . . . 6  |-  ( ( F `  X )  e.  ~P X  -> 
( A. y  e. 
~P  X ( F `
 y )  C_  ( F `  X )  ->  ( F `  ( F `  X ) )  C_  ( F `  X ) ) )
6858, 64, 67sylc 65 . . . . 5  |-  ( ( A  e.  V  /\  ( F `  A ) 
C_  A  /\  A. x  e.  ~P  A A. y  e.  ~P  x ( F `  y )  C_  ( F `  x )
)  ->  ( F `  ( F `  X
) )  C_  ( F `  X )
)
69 fveq2 6191 . . . . . . 7  |-  ( w  =  ( F `  X )  ->  ( F `  w )  =  ( F `  ( F `  X ) ) )
70 id 22 . . . . . . 7  |-  ( w  =  ( F `  X )  ->  w  =  ( F `  X ) )
7169, 70sseq12d 3634 . . . . . 6  |-  ( w  =  ( F `  X )  ->  (
( F `  w
)  C_  w  <->  ( F `  ( F `  X
) )  C_  ( F `  X )
) )
7271intminss 4503 . . . . 5  |-  ( ( ( F `  X
)  e.  ~P A  /\  ( F `  ( F `  X )
)  C_  ( F `  X ) )  ->  |^| { w  e.  ~P A  |  ( F `  w )  C_  w }  C_  ( F `  X ) )
7356, 68, 72syl2anc 693 . . . 4  |-  ( ( A  e.  V  /\  ( F `  A ) 
C_  A  /\  A. x  e.  ~P  A A. y  e.  ~P  x ( F `  y )  C_  ( F `  x )
)  ->  |^| { w  e.  ~P A  |  ( F `  w ) 
C_  w }  C_  ( F `  X ) )
7440, 73syl5eqss 3649 . . 3  |-  ( ( A  e.  V  /\  ( F `  A ) 
C_  A  /\  A. x  e.  ~P  A A. y  e.  ~P  x ( F `  y )  C_  ( F `  x )
)  ->  X  C_  ( F `  X )
)
7541, 74eqssd 3620 . 2  |-  ( ( A  e.  V  /\  ( F `  A ) 
C_  A  /\  A. x  e.  ~P  A A. y  e.  ~P  x ( F `  y )  C_  ( F `  x )
)  ->  ( F `  X )  =  X )
7610, 75jca 554 1  |-  ( ( A  e.  V  /\  ( F `  A ) 
C_  A  /\  A. x  e.  ~P  A A. y  e.  ~P  x ( F `  y )  C_  ( F `  x )
)  ->  ( X  C_  A  /\  ( F `
 X )  =  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916    C_ wss 3574   ~Pcpw 4158   |^|cint 4475   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-iota 5851  df-fv 5896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator