| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > knatar | Structured version Visualization version Unicode version | ||
| Description: The Knaster-Tarski
theorem says that every monotone function over a
complete lattice has a (least) fixpoint. Here we specialize this
theorem to the case when the lattice is the powerset lattice |
| Ref | Expression |
|---|---|
| knatar.1 |
|
| Ref | Expression |
|---|---|
| knatar |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | knatar.1 |
. . 3
| |
| 2 | pwidg 4173 |
. . . . 5
| |
| 3 | 2 | 3ad2ant1 1082 |
. . . 4
|
| 4 | simp2 1062 |
. . . 4
| |
| 5 | fveq2 6191 |
. . . . . 6
| |
| 6 | id 22 |
. . . . . 6
| |
| 7 | 5, 6 | sseq12d 3634 |
. . . . 5
|
| 8 | 7 | intminss 4503 |
. . . 4
|
| 9 | 3, 4, 8 | syl2anc 693 |
. . 3
|
| 10 | 1, 9 | syl5eqss 3649 |
. 2
|
| 11 | fveq2 6191 |
. . . . . . . . . . . . . 14
| |
| 12 | id 22 |
. . . . . . . . . . . . . 14
| |
| 13 | 11, 12 | sseq12d 3634 |
. . . . . . . . . . . . 13
|
| 14 | 13 | intminss 4503 |
. . . . . . . . . . . 12
|
| 15 | 14 | adantl 482 |
. . . . . . . . . . 11
|
| 16 | 1, 15 | syl5eqss 3649 |
. . . . . . . . . 10
|
| 17 | vex 3203 |
. . . . . . . . . . 11
| |
| 18 | 17 | elpw2 4828 |
. . . . . . . . . 10
|
| 19 | 16, 18 | sylibr 224 |
. . . . . . . . 9
|
| 20 | simprl 794 |
. . . . . . . . . 10
| |
| 21 | simpl3 1066 |
. . . . . . . . . 10
| |
| 22 | pweq 4161 |
. . . . . . . . . . . 12
| |
| 23 | fveq2 6191 |
. . . . . . . . . . . . 13
| |
| 24 | 23 | sseq2d 3633 |
. . . . . . . . . . . 12
|
| 25 | 22, 24 | raleqbidv 3152 |
. . . . . . . . . . 11
|
| 26 | 25 | rspcv 3305 |
. . . . . . . . . 10
|
| 27 | 20, 21, 26 | sylc 65 |
. . . . . . . . 9
|
| 28 | fveq2 6191 |
. . . . . . . . . . 11
| |
| 29 | 28 | sseq1d 3632 |
. . . . . . . . . 10
|
| 30 | 29 | rspcv 3305 |
. . . . . . . . 9
|
| 31 | 19, 27, 30 | sylc 65 |
. . . . . . . 8
|
| 32 | simprr 796 |
. . . . . . . 8
| |
| 33 | 31, 32 | sstrd 3613 |
. . . . . . 7
|
| 34 | 33 | expr 643 |
. . . . . 6
|
| 35 | 34 | ralrimiva 2966 |
. . . . 5
|
| 36 | ssintrab 4500 |
. . . . 5
| |
| 37 | 35, 36 | sylibr 224 |
. . . 4
|
| 38 | 13 | cbvrabv 3199 |
. . . . . 6
|
| 39 | 38 | inteqi 4479 |
. . . . 5
|
| 40 | 1, 39 | eqtri 2644 |
. . . 4
|
| 41 | 37, 40 | syl6sseqr 3652 |
. . 3
|
| 42 | 3, 10 | sselpwd 4807 |
. . . . . . . 8
|
| 43 | simp3 1063 |
. . . . . . . . 9
| |
| 44 | pweq 4161 |
. . . . . . . . . . 11
| |
| 45 | fveq2 6191 |
. . . . . . . . . . . 12
| |
| 46 | 45 | sseq2d 3633 |
. . . . . . . . . . 11
|
| 47 | 44, 46 | raleqbidv 3152 |
. . . . . . . . . 10
|
| 48 | 47 | rspcv 3305 |
. . . . . . . . 9
|
| 49 | 3, 43, 48 | sylc 65 |
. . . . . . . 8
|
| 50 | 28 | sseq1d 3632 |
. . . . . . . . 9
|
| 51 | 50 | rspcv 3305 |
. . . . . . . 8
|
| 52 | 42, 49, 51 | sylc 65 |
. . . . . . 7
|
| 53 | 52, 4 | sstrd 3613 |
. . . . . 6
|
| 54 | fvex 6201 |
. . . . . . 7
| |
| 55 | 54 | elpw 4164 |
. . . . . 6
|
| 56 | 53, 55 | sylibr 224 |
. . . . 5
|
| 57 | 54 | elpw 4164 |
. . . . . . 7
|
| 58 | 41, 57 | sylibr 224 |
. . . . . 6
|
| 59 | pweq 4161 |
. . . . . . . . 9
| |
| 60 | fveq2 6191 |
. . . . . . . . . 10
| |
| 61 | 60 | sseq2d 3633 |
. . . . . . . . 9
|
| 62 | 59, 61 | raleqbidv 3152 |
. . . . . . . 8
|
| 63 | 62 | rspcv 3305 |
. . . . . . 7
|
| 64 | 42, 43, 63 | sylc 65 |
. . . . . 6
|
| 65 | fveq2 6191 |
. . . . . . . 8
| |
| 66 | 65 | sseq1d 3632 |
. . . . . . 7
|
| 67 | 66 | rspcv 3305 |
. . . . . 6
|
| 68 | 58, 64, 67 | sylc 65 |
. . . . 5
|
| 69 | fveq2 6191 |
. . . . . . 7
| |
| 70 | id 22 |
. . . . . . 7
| |
| 71 | 69, 70 | sseq12d 3634 |
. . . . . 6
|
| 72 | 71 | intminss 4503 |
. . . . 5
|
| 73 | 56, 68, 72 | syl2anc 693 |
. . . 4
|
| 74 | 40, 73 | syl5eqss 3649 |
. . 3
|
| 75 | 41, 74 | eqssd 3620 |
. 2
|
| 76 | 10, 75 | jca 554 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-br 4654 df-iota 5851 df-fv 5896 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |