MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqval Structured version   Visualization version   GIF version

Theorem kqval 21529
Description: Value of the quotient topology function. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqval (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop 𝐹))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem kqval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 topontop 20718 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2 id 22 . . . . 5 (𝑗 = 𝐽𝑗 = 𝐽)
3 unieq 4444 . . . . . 6 (𝑗 = 𝐽 𝑗 = 𝐽)
4 rabeq 3192 . . . . . 6 (𝑗 = 𝐽 → {𝑦𝑗𝑥𝑦} = {𝑦𝐽𝑥𝑦})
53, 4mpteq12dv 4733 . . . . 5 (𝑗 = 𝐽 → (𝑥 𝑗 ↦ {𝑦𝑗𝑥𝑦}) = (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}))
62, 5oveq12d 6668 . . . 4 (𝑗 = 𝐽 → (𝑗 qTop (𝑥 𝑗 ↦ {𝑦𝑗𝑥𝑦})) = (𝐽 qTop (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})))
7 df-kq 21497 . . . 4 KQ = (𝑗 ∈ Top ↦ (𝑗 qTop (𝑥 𝑗 ↦ {𝑦𝑗𝑥𝑦})))
8 ovex 6678 . . . 4 (𝐽 qTop (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})) ∈ V
96, 7, 8fvmpt 6282 . . 3 (𝐽 ∈ Top → (KQ‘𝐽) = (𝐽 qTop (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})))
101, 9syl 17 . 2 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})))
11 kqval.2 . . . 4 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
12 toponuni 20719 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1312mpteq1d 4738 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦}) = (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}))
1411, 13syl5eq 2668 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 = (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦}))
1514oveq2d 6666 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 qTop 𝐹) = (𝐽 qTop (𝑥 𝐽 ↦ {𝑦𝐽𝑥𝑦})))
1610, 15eqtr4d 2659 1 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  {crab 2916   cuni 4436  cmpt 4729  cfv 5888  (class class class)co 6650   qTop cqtop 16163  Topctop 20698  TopOnctopon 20715  KQckq 21496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-topon 20716  df-kq 21497
This theorem is referenced by:  kqtopon  21530  kqid  21531  kqopn  21537  kqcld  21538  t0kq  21621
  Copyright terms: Public domain W3C validator