MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqopn Structured version   Visualization version   GIF version

Theorem kqopn 21537
Description: The topological indistinguishability map is an open map. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqopn ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹𝑈) ∈ (KQ‘𝐽))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem kqopn
StepHypRef Expression
1 imassrn 5477 . . . 4 (𝐹𝑈) ⊆ ran 𝐹
21a1i 11 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹𝑈) ⊆ ran 𝐹)
3 kqval.2 . . . . 5 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
43kqsat 21534 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹 “ (𝐹𝑈)) = 𝑈)
5 simpr 477 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → 𝑈𝐽)
64, 5eqeltrd 2701 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹 “ (𝐹𝑈)) ∈ 𝐽)
73kqffn 21528 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
8 dffn4 6121 . . . . . 6 (𝐹 Fn 𝑋𝐹:𝑋onto→ran 𝐹)
97, 8sylib 208 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝐹:𝑋onto→ran 𝐹)
109adantr 481 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → 𝐹:𝑋onto→ran 𝐹)
11 elqtop3 21506 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto→ran 𝐹) → ((𝐹𝑈) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹𝑈) ⊆ ran 𝐹 ∧ (𝐹 “ (𝐹𝑈)) ∈ 𝐽)))
1210, 11syldan 487 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → ((𝐹𝑈) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹𝑈) ⊆ ran 𝐹 ∧ (𝐹 “ (𝐹𝑈)) ∈ 𝐽)))
132, 6, 12mpbir2and 957 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹𝑈) ∈ (𝐽 qTop 𝐹))
143kqval 21529 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (KQ‘𝐽) = (𝐽 qTop 𝐹))
1514adantr 481 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (KQ‘𝐽) = (𝐽 qTop 𝐹))
1613, 15eleqtrrd 2704 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → (𝐹𝑈) ∈ (KQ‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {crab 2916  wss 3574  cmpt 4729  ccnv 5113  ran crn 5115  cima 5117   Fn wfn 5883  ontowfo 5886  cfv 5888  (class class class)co 6650   qTop cqtop 16163  TopOnctopon 20715  KQckq 21496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-qtop 16167  df-topon 20716  df-kq 21497
This theorem is referenced by:  kqt0lem  21539  isr0  21540  regr1lem  21542  kqreglem1  21544  kqreglem2  21545  kqnrmlem1  21546  kqnrmlem2  21547
  Copyright terms: Public domain W3C validator