![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabeq | Structured version Visualization version GIF version |
Description: Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.) |
Ref | Expression |
---|---|
rabeq | ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2764 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2764 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | rabeqf 3190 | 1 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 {crab 2916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 |
This theorem is referenced by: rabeqdv 3194 difeq1 3721 ifeq1 4090 ifeq2 4091 elfvmptrab 6306 supp0 7300 suppvalfn 7302 suppsnop 7309 fnsuppres 7322 pmvalg 7868 supeq2 8354 oieq2 8418 scott0 8749 hsmex2 9255 iooval2 12208 fzval2 12329 hashbc 13237 elovmpt2wrd 13347 phimullem 15484 mrcfval 16268 ipoval 17154 psgnfval 17920 pmtrsn 17939 lspfval 18973 lsppropd 19018 rrgval 19287 aspval 19328 psrval 19362 mvrfval 19420 ltbval 19471 opsrval 19474 dsmmbas2 20081 dsmmelbas 20083 frlmbas 20099 m1detdiag 20403 clsfval 20829 ordtrest 21006 ordtrest2lem 21007 ordtrest2 21008 isptfin 21319 islocfin 21320 xkoval 21390 xkopt 21458 qtopres 21501 kqval 21529 tsmsval2 21933 cncfval 22691 isphtpy 22780 cfilfval 23062 iscmet 23082 ttgval 25755 uvtxa0 26294 cusgredg 26320 cffldtocusgr 26343 vtxdg0e 26370 1hevtxdg1 26402 hashecclwwlksn1 26954 umgrhashecclwwlk 26955 konigsbergiedgw 27108 konigsbergiedgwOLD 27109 ordtprsval 29964 ordtrestNEW 29967 ordtrest2NEWlem 29968 omsval 30355 orrvcval4 30526 orrvcoel 30527 orrvccel 30528 snmlfval 31312 funray 32247 fvray 32248 itg2addnclem2 33462 cntotbnd 33595 docaffvalN 36410 docafvalN 36411 lcfr 36874 hlhilocv 37249 pellfundval 37444 elmnc 37706 rgspnval 37738 rfovd 38295 fsovd 38302 fsovcnvlem 38307 ntrneibex 38371 k0004val0 38452 rabeqd 39276 dvnprodlem1 40161 dvnprodlem2 40162 dvnprodlem3 40163 dvnprod 40164 assintopmap 41842 rmsuppss 42151 mndpsuppss 42152 scmsuppss 42153 dmatALTval 42189 dmatALTbas 42190 |
Copyright terms: Public domain | W3C validator |