Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kur14lem6 Structured version   Visualization version   GIF version

Theorem kur14lem6 31193
Description: Lemma for kur14 31198. If 𝑘 is the complementation operator and 𝑘 is the closure operator, this expresses the identity 𝑘𝑐𝑘𝐴 = 𝑘𝑐𝑘𝑐𝑘𝑐𝑘𝐴 for any subset 𝐴 of the topological space. This is the key result that lets us cut down long enough sequences of 𝑐𝑘𝑐𝑘... that arise when applying closure and complement repeatedly to 𝐴, and explains why we end up with a number as large as 14, yet no larger. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
kur14lem.j 𝐽 ∈ Top
kur14lem.x 𝑋 = 𝐽
kur14lem.k 𝐾 = (cls‘𝐽)
kur14lem.i 𝐼 = (int‘𝐽)
kur14lem.a 𝐴𝑋
kur14lem.b 𝐵 = (𝑋 ∖ (𝐾𝐴))
Assertion
Ref Expression
kur14lem6 (𝐾‘(𝐼‘(𝐾𝐵))) = (𝐾𝐵)

Proof of Theorem kur14lem6
StepHypRef Expression
1 kur14lem.j . . . . 5 𝐽 ∈ Top
2 kur14lem.x . . . . . 6 𝑋 = 𝐽
3 kur14lem.k . . . . . 6 𝐾 = (cls‘𝐽)
4 kur14lem.i . . . . . 6 𝐼 = (int‘𝐽)
5 kur14lem.b . . . . . . 7 𝐵 = (𝑋 ∖ (𝐾𝐴))
6 difss 3737 . . . . . . 7 (𝑋 ∖ (𝐾𝐴)) ⊆ 𝑋
75, 6eqsstri 3635 . . . . . 6 𝐵𝑋
81, 2, 3, 4, 7kur14lem3 31190 . . . . 5 (𝐾𝐵) ⊆ 𝑋
94fveq1i 6192 . . . . . 6 (𝐼‘(𝐾𝐵)) = ((int‘𝐽)‘(𝐾𝐵))
102ntrss2 20861 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝐾𝐵) ⊆ 𝑋) → ((int‘𝐽)‘(𝐾𝐵)) ⊆ (𝐾𝐵))
111, 8, 10mp2an 708 . . . . . 6 ((int‘𝐽)‘(𝐾𝐵)) ⊆ (𝐾𝐵)
129, 11eqsstri 3635 . . . . 5 (𝐼‘(𝐾𝐵)) ⊆ (𝐾𝐵)
132clsss 20858 . . . . 5 ((𝐽 ∈ Top ∧ (𝐾𝐵) ⊆ 𝑋 ∧ (𝐼‘(𝐾𝐵)) ⊆ (𝐾𝐵)) → ((cls‘𝐽)‘(𝐼‘(𝐾𝐵))) ⊆ ((cls‘𝐽)‘(𝐾𝐵)))
141, 8, 12, 13mp3an 1424 . . . 4 ((cls‘𝐽)‘(𝐼‘(𝐾𝐵))) ⊆ ((cls‘𝐽)‘(𝐾𝐵))
153fveq1i 6192 . . . 4 (𝐾‘(𝐼‘(𝐾𝐵))) = ((cls‘𝐽)‘(𝐼‘(𝐾𝐵)))
163fveq1i 6192 . . . 4 (𝐾‘(𝐾𝐵)) = ((cls‘𝐽)‘(𝐾𝐵))
1714, 15, 163sstr4i 3644 . . 3 (𝐾‘(𝐼‘(𝐾𝐵))) ⊆ (𝐾‘(𝐾𝐵))
181, 2, 3, 4, 7kur14lem5 31192 . . 3 (𝐾‘(𝐾𝐵)) = (𝐾𝐵)
1917, 18sseqtri 3637 . 2 (𝐾‘(𝐼‘(𝐾𝐵))) ⊆ (𝐾𝐵)
201, 2, 3, 4, 8kur14lem2 31189 . . . . 5 (𝐼‘(𝐾𝐵)) = (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾𝐵))))
21 difss 3737 . . . . 5 (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾𝐵)))) ⊆ 𝑋
2220, 21eqsstri 3635 . . . 4 (𝐼‘(𝐾𝐵)) ⊆ 𝑋
23 kur14lem.a . . . . . . . . 9 𝐴𝑋
241, 2, 3, 4, 23kur14lem3 31190 . . . . . . . 8 (𝐾𝐴) ⊆ 𝑋
255fveq2i 6194 . . . . . . . . . . 11 (𝐾𝐵) = (𝐾‘(𝑋 ∖ (𝐾𝐴)))
2625difeq2i 3725 . . . . . . . . . 10 (𝑋 ∖ (𝐾𝐵)) = (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾𝐴))))
271, 2, 3, 4, 24kur14lem2 31189 . . . . . . . . . 10 (𝐼‘(𝐾𝐴)) = (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾𝐴))))
284fveq1i 6192 . . . . . . . . . 10 (𝐼‘(𝐾𝐴)) = ((int‘𝐽)‘(𝐾𝐴))
2926, 27, 283eqtr2i 2650 . . . . . . . . 9 (𝑋 ∖ (𝐾𝐵)) = ((int‘𝐽)‘(𝐾𝐴))
302ntrss2 20861 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝐾𝐴) ⊆ 𝑋) → ((int‘𝐽)‘(𝐾𝐴)) ⊆ (𝐾𝐴))
311, 24, 30mp2an 708 . . . . . . . . 9 ((int‘𝐽)‘(𝐾𝐴)) ⊆ (𝐾𝐴)
3229, 31eqsstri 3635 . . . . . . . 8 (𝑋 ∖ (𝐾𝐵)) ⊆ (𝐾𝐴)
332clsss 20858 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝐾𝐴) ⊆ 𝑋 ∧ (𝑋 ∖ (𝐾𝐵)) ⊆ (𝐾𝐴)) → ((cls‘𝐽)‘(𝑋 ∖ (𝐾𝐵))) ⊆ ((cls‘𝐽)‘(𝐾𝐴)))
341, 24, 32, 33mp3an 1424 . . . . . . 7 ((cls‘𝐽)‘(𝑋 ∖ (𝐾𝐵))) ⊆ ((cls‘𝐽)‘(𝐾𝐴))
353fveq1i 6192 . . . . . . 7 (𝐾‘(𝑋 ∖ (𝐾𝐵))) = ((cls‘𝐽)‘(𝑋 ∖ (𝐾𝐵)))
361, 2, 3, 4, 23kur14lem5 31192 . . . . . . . 8 (𝐾‘(𝐾𝐴)) = (𝐾𝐴)
373fveq1i 6192 . . . . . . . 8 (𝐾‘(𝐾𝐴)) = ((cls‘𝐽)‘(𝐾𝐴))
3836, 37eqtr3i 2646 . . . . . . 7 (𝐾𝐴) = ((cls‘𝐽)‘(𝐾𝐴))
3934, 35, 383sstr4i 3644 . . . . . 6 (𝐾‘(𝑋 ∖ (𝐾𝐵))) ⊆ (𝐾𝐴)
40 sscon 3744 . . . . . 6 ((𝐾‘(𝑋 ∖ (𝐾𝐵))) ⊆ (𝐾𝐴) → (𝑋 ∖ (𝐾𝐴)) ⊆ (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾𝐵)))))
4139, 40ax-mp 5 . . . . 5 (𝑋 ∖ (𝐾𝐴)) ⊆ (𝑋 ∖ (𝐾‘(𝑋 ∖ (𝐾𝐵))))
4241, 5, 203sstr4i 3644 . . . 4 𝐵 ⊆ (𝐼‘(𝐾𝐵))
432clsss 20858 . . . 4 ((𝐽 ∈ Top ∧ (𝐼‘(𝐾𝐵)) ⊆ 𝑋𝐵 ⊆ (𝐼‘(𝐾𝐵))) → ((cls‘𝐽)‘𝐵) ⊆ ((cls‘𝐽)‘(𝐼‘(𝐾𝐵))))
441, 22, 42, 43mp3an 1424 . . 3 ((cls‘𝐽)‘𝐵) ⊆ ((cls‘𝐽)‘(𝐼‘(𝐾𝐵)))
453fveq1i 6192 . . 3 (𝐾𝐵) = ((cls‘𝐽)‘𝐵)
4644, 45, 153sstr4i 3644 . 2 (𝐾𝐵) ⊆ (𝐾‘(𝐼‘(𝐾𝐵)))
4719, 46eqssi 3619 1 (𝐾‘(𝐼‘(𝐾𝐵))) = (𝐾𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  wcel 1990  cdif 3571  wss 3574   cuni 4436  cfv 5888  Topctop 20698  intcnt 20821  clsccl 20822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-top 20699  df-cld 20823  df-ntr 20824  df-cls 20825
This theorem is referenced by:  kur14lem7  31194
  Copyright terms: Public domain W3C validator