Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  kur14lem6 Structured version   Visualization version   Unicode version

Theorem kur14lem6 31193
Description: Lemma for kur14 31198. If  k is the complementation operator and  k is the closure operator, this expresses the identity  k c
k A  =  k c k c k c k A for any subset  A of the topological space. This is the key result that lets us cut down long enough sequences of  c k c k ... that arise when applying closure and complement repeatedly to  A, and explains why we end up with a number as large as  1 4, yet no larger. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
kur14lem.j  |-  J  e. 
Top
kur14lem.x  |-  X  = 
U. J
kur14lem.k  |-  K  =  ( cls `  J
)
kur14lem.i  |-  I  =  ( int `  J
)
kur14lem.a  |-  A  C_  X
kur14lem.b  |-  B  =  ( X  \  ( K `  A )
)
Assertion
Ref Expression
kur14lem6  |-  ( K `
 ( I `  ( K `  B ) ) )  =  ( K `  B )

Proof of Theorem kur14lem6
StepHypRef Expression
1 kur14lem.j . . . . 5  |-  J  e. 
Top
2 kur14lem.x . . . . . 6  |-  X  = 
U. J
3 kur14lem.k . . . . . 6  |-  K  =  ( cls `  J
)
4 kur14lem.i . . . . . 6  |-  I  =  ( int `  J
)
5 kur14lem.b . . . . . . 7  |-  B  =  ( X  \  ( K `  A )
)
6 difss 3737 . . . . . . 7  |-  ( X 
\  ( K `  A ) )  C_  X
75, 6eqsstri 3635 . . . . . 6  |-  B  C_  X
81, 2, 3, 4, 7kur14lem3 31190 . . . . 5  |-  ( K `
 B )  C_  X
94fveq1i 6192 . . . . . 6  |-  ( I `
 ( K `  B ) )  =  ( ( int `  J
) `  ( K `  B ) )
102ntrss2 20861 . . . . . . 7  |-  ( ( J  e.  Top  /\  ( K `  B ) 
C_  X )  -> 
( ( int `  J
) `  ( K `  B ) )  C_  ( K `  B ) )
111, 8, 10mp2an 708 . . . . . 6  |-  ( ( int `  J ) `
 ( K `  B ) )  C_  ( K `  B )
129, 11eqsstri 3635 . . . . 5  |-  ( I `
 ( K `  B ) )  C_  ( K `  B )
132clsss 20858 . . . . 5  |-  ( ( J  e.  Top  /\  ( K `  B ) 
C_  X  /\  (
I `  ( K `  B ) )  C_  ( K `  B ) )  ->  ( ( cls `  J ) `  ( I `  ( K `  B )
) )  C_  (
( cls `  J
) `  ( K `  B ) ) )
141, 8, 12, 13mp3an 1424 . . . 4  |-  ( ( cls `  J ) `
 ( I `  ( K `  B ) ) )  C_  (
( cls `  J
) `  ( K `  B ) )
153fveq1i 6192 . . . 4  |-  ( K `
 ( I `  ( K `  B ) ) )  =  ( ( cls `  J
) `  ( I `  ( K `  B
) ) )
163fveq1i 6192 . . . 4  |-  ( K `
 ( K `  B ) )  =  ( ( cls `  J
) `  ( K `  B ) )
1714, 15, 163sstr4i 3644 . . 3  |-  ( K `
 ( I `  ( K `  B ) ) )  C_  ( K `  ( K `  B ) )
181, 2, 3, 4, 7kur14lem5 31192 . . 3  |-  ( K `
 ( K `  B ) )  =  ( K `  B
)
1917, 18sseqtri 3637 . 2  |-  ( K `
 ( I `  ( K `  B ) ) )  C_  ( K `  B )
201, 2, 3, 4, 8kur14lem2 31189 . . . . 5  |-  ( I `
 ( K `  B ) )  =  ( X  \  ( K `  ( X  \  ( K `  B
) ) ) )
21 difss 3737 . . . . 5  |-  ( X 
\  ( K `  ( X  \  ( K `  B )
) ) )  C_  X
2220, 21eqsstri 3635 . . . 4  |-  ( I `
 ( K `  B ) )  C_  X
23 kur14lem.a . . . . . . . . 9  |-  A  C_  X
241, 2, 3, 4, 23kur14lem3 31190 . . . . . . . 8  |-  ( K `
 A )  C_  X
255fveq2i 6194 . . . . . . . . . . 11  |-  ( K `
 B )  =  ( K `  ( X  \  ( K `  A ) ) )
2625difeq2i 3725 . . . . . . . . . 10  |-  ( X 
\  ( K `  B ) )  =  ( X  \  ( K `  ( X  \  ( K `  A
) ) ) )
271, 2, 3, 4, 24kur14lem2 31189 . . . . . . . . . 10  |-  ( I `
 ( K `  A ) )  =  ( X  \  ( K `  ( X  \  ( K `  A
) ) ) )
284fveq1i 6192 . . . . . . . . . 10  |-  ( I `
 ( K `  A ) )  =  ( ( int `  J
) `  ( K `  A ) )
2926, 27, 283eqtr2i 2650 . . . . . . . . 9  |-  ( X 
\  ( K `  B ) )  =  ( ( int `  J
) `  ( K `  A ) )
302ntrss2 20861 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  ( K `  A ) 
C_  X )  -> 
( ( int `  J
) `  ( K `  A ) )  C_  ( K `  A ) )
311, 24, 30mp2an 708 . . . . . . . . 9  |-  ( ( int `  J ) `
 ( K `  A ) )  C_  ( K `  A )
3229, 31eqsstri 3635 . . . . . . . 8  |-  ( X 
\  ( K `  B ) )  C_  ( K `  A )
332clsss 20858 . . . . . . . 8  |-  ( ( J  e.  Top  /\  ( K `  A ) 
C_  X  /\  ( X  \  ( K `  B ) )  C_  ( K `  A ) )  ->  ( ( cls `  J ) `  ( X  \  ( K `  B )
) )  C_  (
( cls `  J
) `  ( K `  A ) ) )
341, 24, 32, 33mp3an 1424 . . . . . . 7  |-  ( ( cls `  J ) `
 ( X  \ 
( K `  B
) ) )  C_  ( ( cls `  J
) `  ( K `  A ) )
353fveq1i 6192 . . . . . . 7  |-  ( K `
 ( X  \ 
( K `  B
) ) )  =  ( ( cls `  J
) `  ( X  \  ( K `  B
) ) )
361, 2, 3, 4, 23kur14lem5 31192 . . . . . . . 8  |-  ( K `
 ( K `  A ) )  =  ( K `  A
)
373fveq1i 6192 . . . . . . . 8  |-  ( K `
 ( K `  A ) )  =  ( ( cls `  J
) `  ( K `  A ) )
3836, 37eqtr3i 2646 . . . . . . 7  |-  ( K `
 A )  =  ( ( cls `  J
) `  ( K `  A ) )
3934, 35, 383sstr4i 3644 . . . . . 6  |-  ( K `
 ( X  \ 
( K `  B
) ) )  C_  ( K `  A )
40 sscon 3744 . . . . . 6  |-  ( ( K `  ( X 
\  ( K `  B ) ) ) 
C_  ( K `  A )  ->  ( X  \  ( K `  A ) )  C_  ( X  \  ( K `  ( X  \  ( K `  B
) ) ) ) )
4139, 40ax-mp 5 . . . . 5  |-  ( X 
\  ( K `  A ) )  C_  ( X  \  ( K `  ( X  \  ( K `  B
) ) ) )
4241, 5, 203sstr4i 3644 . . . 4  |-  B  C_  ( I `  ( K `  B )
)
432clsss 20858 . . . 4  |-  ( ( J  e.  Top  /\  ( I `  ( K `  B )
)  C_  X  /\  B  C_  ( I `  ( K `  B ) ) )  ->  (
( cls `  J
) `  B )  C_  ( ( cls `  J
) `  ( I `  ( K `  B
) ) ) )
441, 22, 42, 43mp3an 1424 . . 3  |-  ( ( cls `  J ) `
 B )  C_  ( ( cls `  J
) `  ( I `  ( K `  B
) ) )
453fveq1i 6192 . . 3  |-  ( K `
 B )  =  ( ( cls `  J
) `  B )
4644, 45, 153sstr4i 3644 . 2  |-  ( K `
 B )  C_  ( K `  ( I `
 ( K `  B ) ) )
4719, 46eqssi 3619 1  |-  ( K `
 ( I `  ( K `  B ) ) )  =  ( K `  B )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    e. wcel 1990    \ cdif 3571    C_ wss 3574   U.cuni 4436   ` cfv 5888   Topctop 20698   intcnt 20821   clsccl 20822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-top 20699  df-cld 20823  df-ntr 20824  df-cls 20825
This theorem is referenced by:  kur14lem7  31194
  Copyright terms: Public domain W3C validator