MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsind Structured version   Visualization version   GIF version

Theorem lbsind 19080
Description: A basis is linearly independent; that is, every element has a span which trivially intersects the span of the remainder of the basis. (Contributed by Mario Carneiro, 12-Jan-2015.)
Hypotheses
Ref Expression
lbsss.v 𝑉 = (Base‘𝑊)
lbsss.j 𝐽 = (LBasis‘𝑊)
lbssp.n 𝑁 = (LSpan‘𝑊)
lbsind.f 𝐹 = (Scalar‘𝑊)
lbsind.s · = ( ·𝑠𝑊)
lbsind.k 𝐾 = (Base‘𝐹)
lbsind.z 0 = (0g𝐹)
Assertion
Ref Expression
lbsind (((𝐵𝐽𝐸𝐵) ∧ (𝐴𝐾𝐴0 )) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})))

Proof of Theorem lbsind
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifsn 4317 . 2 (𝐴 ∈ (𝐾 ∖ { 0 }) ↔ (𝐴𝐾𝐴0 ))
2 elfvdm 6220 . . . . . . . 8 (𝐵 ∈ (LBasis‘𝑊) → 𝑊 ∈ dom LBasis)
3 lbsss.j . . . . . . . 8 𝐽 = (LBasis‘𝑊)
42, 3eleq2s 2719 . . . . . . 7 (𝐵𝐽𝑊 ∈ dom LBasis)
5 lbsss.v . . . . . . . 8 𝑉 = (Base‘𝑊)
6 lbsind.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
7 lbsind.s . . . . . . . 8 · = ( ·𝑠𝑊)
8 lbsind.k . . . . . . . 8 𝐾 = (Base‘𝐹)
9 lbssp.n . . . . . . . 8 𝑁 = (LSpan‘𝑊)
10 lbsind.z . . . . . . . 8 0 = (0g𝐹)
115, 6, 7, 8, 3, 9, 10islbs 19076 . . . . . . 7 (𝑊 ∈ dom LBasis → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
124, 11syl 17 . . . . . 6 (𝐵𝐽 → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
1312ibi 256 . . . . 5 (𝐵𝐽 → (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))
1413simp3d 1075 . . . 4 (𝐵𝐽 → ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))
15 oveq2 6658 . . . . . . 7 (𝑥 = 𝐸 → (𝑦 · 𝑥) = (𝑦 · 𝐸))
16 sneq 4187 . . . . . . . . 9 (𝑥 = 𝐸 → {𝑥} = {𝐸})
1716difeq2d 3728 . . . . . . . 8 (𝑥 = 𝐸 → (𝐵 ∖ {𝑥}) = (𝐵 ∖ {𝐸}))
1817fveq2d 6195 . . . . . . 7 (𝑥 = 𝐸 → (𝑁‘(𝐵 ∖ {𝑥})) = (𝑁‘(𝐵 ∖ {𝐸})))
1915, 18eleq12d 2695 . . . . . 6 (𝑥 = 𝐸 → ((𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})) ↔ (𝑦 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))))
2019notbid 308 . . . . 5 (𝑥 = 𝐸 → (¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})) ↔ ¬ (𝑦 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))))
21 oveq1 6657 . . . . . . 7 (𝑦 = 𝐴 → (𝑦 · 𝐸) = (𝐴 · 𝐸))
2221eleq1d 2686 . . . . . 6 (𝑦 = 𝐴 → ((𝑦 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})) ↔ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))))
2322notbid 308 . . . . 5 (𝑦 = 𝐴 → (¬ (𝑦 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})) ↔ ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))))
2420, 23rspc2v 3322 . . . 4 ((𝐸𝐵𝐴 ∈ (𝐾 ∖ { 0 })) → (∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))))
2514, 24syl5com 31 . . 3 (𝐵𝐽 → ((𝐸𝐵𝐴 ∈ (𝐾 ∖ { 0 })) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))))
2625impl 650 . 2 (((𝐵𝐽𝐸𝐵) ∧ 𝐴 ∈ (𝐾 ∖ { 0 })) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})))
271, 26sylan2br 493 1 (((𝐵𝐽𝐸𝐵) ∧ (𝐴𝐾𝐴0 )) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  cdif 3571  wss 3574  {csn 4177  dom cdm 5114  cfv 5888  (class class class)co 6650  Basecbs 15857  Scalarcsca 15944   ·𝑠 cvsca 15945  0gc0g 16100  LSpanclspn 18971  LBasisclbs 19074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-lbs 19075
This theorem is referenced by:  lbsind2  19081
  Copyright terms: Public domain W3C validator