MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsind Structured version   Visualization version   Unicode version

Theorem lbsind 19080
Description: A basis is linearly independent; that is, every element has a span which trivially intersects the span of the remainder of the basis. (Contributed by Mario Carneiro, 12-Jan-2015.)
Hypotheses
Ref Expression
lbsss.v  |-  V  =  ( Base `  W
)
lbsss.j  |-  J  =  (LBasis `  W )
lbssp.n  |-  N  =  ( LSpan `  W )
lbsind.f  |-  F  =  (Scalar `  W )
lbsind.s  |-  .x.  =  ( .s `  W )
lbsind.k  |-  K  =  ( Base `  F
)
lbsind.z  |-  .0.  =  ( 0g `  F )
Assertion
Ref Expression
lbsind  |-  ( ( ( B  e.  J  /\  E  e.  B
)  /\  ( A  e.  K  /\  A  =/= 
.0.  ) )  ->  -.  ( A  .x.  E
)  e.  ( N `
 ( B  \  { E } ) ) )

Proof of Theorem lbsind
Dummy variables  y  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifsn 4317 . 2  |-  ( A  e.  ( K  \  {  .0.  } )  <->  ( A  e.  K  /\  A  =/= 
.0.  ) )
2 elfvdm 6220 . . . . . . . 8  |-  ( B  e.  (LBasis `  W
)  ->  W  e.  dom LBasis )
3 lbsss.j . . . . . . . 8  |-  J  =  (LBasis `  W )
42, 3eleq2s 2719 . . . . . . 7  |-  ( B  e.  J  ->  W  e.  dom LBasis )
5 lbsss.v . . . . . . . 8  |-  V  =  ( Base `  W
)
6 lbsind.f . . . . . . . 8  |-  F  =  (Scalar `  W )
7 lbsind.s . . . . . . . 8  |-  .x.  =  ( .s `  W )
8 lbsind.k . . . . . . . 8  |-  K  =  ( Base `  F
)
9 lbssp.n . . . . . . . 8  |-  N  =  ( LSpan `  W )
10 lbsind.z . . . . . . . 8  |-  .0.  =  ( 0g `  F )
115, 6, 7, 8, 3, 9, 10islbs 19076 . . . . . . 7  |-  ( W  e.  dom LBasis  ->  ( B  e.  J  <->  ( B  C_  V  /\  ( N `
 B )  =  V  /\  A. x  e.  B  A. y  e.  ( K  \  {  .0.  } )  -.  (
y  .x.  x )  e.  ( N `  ( B  \  { x }
) ) ) ) )
124, 11syl 17 . . . . . 6  |-  ( B  e.  J  ->  ( B  e.  J  <->  ( B  C_  V  /\  ( N `
 B )  =  V  /\  A. x  e.  B  A. y  e.  ( K  \  {  .0.  } )  -.  (
y  .x.  x )  e.  ( N `  ( B  \  { x }
) ) ) ) )
1312ibi 256 . . . . 5  |-  ( B  e.  J  ->  ( B  C_  V  /\  ( N `  B )  =  V  /\  A. x  e.  B  A. y  e.  ( K  \  {  .0.  } )  -.  (
y  .x.  x )  e.  ( N `  ( B  \  { x }
) ) ) )
1413simp3d 1075 . . . 4  |-  ( B  e.  J  ->  A. x  e.  B  A. y  e.  ( K  \  {  .0.  } )  -.  (
y  .x.  x )  e.  ( N `  ( B  \  { x }
) ) )
15 oveq2 6658 . . . . . . 7  |-  ( x  =  E  ->  (
y  .x.  x )  =  ( y  .x.  E ) )
16 sneq 4187 . . . . . . . . 9  |-  ( x  =  E  ->  { x }  =  { E } )
1716difeq2d 3728 . . . . . . . 8  |-  ( x  =  E  ->  ( B  \  { x }
)  =  ( B 
\  { E }
) )
1817fveq2d 6195 . . . . . . 7  |-  ( x  =  E  ->  ( N `  ( B  \  { x } ) )  =  ( N `
 ( B  \  { E } ) ) )
1915, 18eleq12d 2695 . . . . . 6  |-  ( x  =  E  ->  (
( y  .x.  x
)  e.  ( N `
 ( B  \  { x } ) )  <->  ( y  .x.  E )  e.  ( N `  ( B 
\  { E }
) ) ) )
2019notbid 308 . . . . 5  |-  ( x  =  E  ->  ( -.  ( y  .x.  x
)  e.  ( N `
 ( B  \  { x } ) )  <->  -.  ( y  .x.  E )  e.  ( N `  ( B 
\  { E }
) ) ) )
21 oveq1 6657 . . . . . . 7  |-  ( y  =  A  ->  (
y  .x.  E )  =  ( A  .x.  E ) )
2221eleq1d 2686 . . . . . 6  |-  ( y  =  A  ->  (
( y  .x.  E
)  e.  ( N `
 ( B  \  { E } ) )  <-> 
( A  .x.  E
)  e.  ( N `
 ( B  \  { E } ) ) ) )
2322notbid 308 . . . . 5  |-  ( y  =  A  ->  ( -.  ( y  .x.  E
)  e.  ( N `
 ( B  \  { E } ) )  <->  -.  ( A  .x.  E
)  e.  ( N `
 ( B  \  { E } ) ) ) )
2420, 23rspc2v 3322 . . . 4  |-  ( ( E  e.  B  /\  A  e.  ( K  \  {  .0.  } ) )  ->  ( A. x  e.  B  A. y  e.  ( K  \  {  .0.  } )  -.  ( y  .x.  x )  e.  ( N `  ( B 
\  { x }
) )  ->  -.  ( A  .x.  E )  e.  ( N `  ( B  \  { E } ) ) ) )
2514, 24syl5com 31 . . 3  |-  ( B  e.  J  ->  (
( E  e.  B  /\  A  e.  ( K  \  {  .0.  }
) )  ->  -.  ( A  .x.  E )  e.  ( N `  ( B  \  { E } ) ) ) )
2625impl 650 . 2  |-  ( ( ( B  e.  J  /\  E  e.  B
)  /\  A  e.  ( K  \  {  .0.  } ) )  ->  -.  ( A  .x.  E )  e.  ( N `  ( B  \  { E } ) ) )
271, 26sylan2br 493 1  |-  ( ( ( B  e.  J  /\  E  e.  B
)  /\  ( A  e.  K  /\  A  =/= 
.0.  ) )  ->  -.  ( A  .x.  E
)  e.  ( N `
 ( B  \  { E } ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    \ cdif 3571    C_ wss 3574   {csn 4177   dom cdm 5114   ` cfv 5888  (class class class)co 6650   Basecbs 15857  Scalarcsca 15944   .scvsca 15945   0gc0g 16100   LSpanclspn 18971  LBasisclbs 19074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-lbs 19075
This theorem is referenced by:  lbsind2  19081
  Copyright terms: Public domain W3C validator