| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lbsind | Structured version Visualization version Unicode version | ||
| Description: A basis is linearly independent; that is, every element has a span which trivially intersects the span of the remainder of the basis. (Contributed by Mario Carneiro, 12-Jan-2015.) |
| Ref | Expression |
|---|---|
| lbsss.v |
|
| lbsss.j |
|
| lbssp.n |
|
| lbsind.f |
|
| lbsind.s |
|
| lbsind.k |
|
| lbsind.z |
|
| Ref | Expression |
|---|---|
| lbsind |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn 4317 |
. 2
| |
| 2 | elfvdm 6220 |
. . . . . . . 8
| |
| 3 | lbsss.j |
. . . . . . . 8
| |
| 4 | 2, 3 | eleq2s 2719 |
. . . . . . 7
|
| 5 | lbsss.v |
. . . . . . . 8
| |
| 6 | lbsind.f |
. . . . . . . 8
| |
| 7 | lbsind.s |
. . . . . . . 8
| |
| 8 | lbsind.k |
. . . . . . . 8
| |
| 9 | lbssp.n |
. . . . . . . 8
| |
| 10 | lbsind.z |
. . . . . . . 8
| |
| 11 | 5, 6, 7, 8, 3, 9, 10 | islbs 19076 |
. . . . . . 7
|
| 12 | 4, 11 | syl 17 |
. . . . . 6
|
| 13 | 12 | ibi 256 |
. . . . 5
|
| 14 | 13 | simp3d 1075 |
. . . 4
|
| 15 | oveq2 6658 |
. . . . . . 7
| |
| 16 | sneq 4187 |
. . . . . . . . 9
| |
| 17 | 16 | difeq2d 3728 |
. . . . . . . 8
|
| 18 | 17 | fveq2d 6195 |
. . . . . . 7
|
| 19 | 15, 18 | eleq12d 2695 |
. . . . . 6
|
| 20 | 19 | notbid 308 |
. . . . 5
|
| 21 | oveq1 6657 |
. . . . . . 7
| |
| 22 | 21 | eleq1d 2686 |
. . . . . 6
|
| 23 | 22 | notbid 308 |
. . . . 5
|
| 24 | 20, 23 | rspc2v 3322 |
. . . 4
|
| 25 | 14, 24 | syl5com 31 |
. . 3
|
| 26 | 25 | impl 650 |
. 2
|
| 27 | 1, 26 | sylan2br 493 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-lbs 19075 |
| This theorem is referenced by: lbsind2 19081 |
| Copyright terms: Public domain | W3C validator |