![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > impl | Structured version Visualization version GIF version |
Description: Export a wff from a left conjunct. (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
impl.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
impl | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impl.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | expd 452 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imp31 448 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 |
This theorem is referenced by: sbc2iedv 3506 csbie2t 3562 frinxp 5184 ordelord 5745 foco2 6379 foco2OLD 6380 frxp 7287 mpt2curryd 7395 omsmolem 7733 erth 7791 unblem1 8212 unwdomg 8489 cflim2 9085 distrlem1pr 9847 uz11 11710 xmulge0 12114 max0add 14050 lcmfunsnlem2lem1 15351 divgcdcoprm0 15379 cncongr1 15381 prmpwdvds 15608 imasleval 16201 dfgrp3lem 17513 resscntz 17764 ablfac1c 18470 lbsind 19080 mplcoe5lem 19467 cply1mul 19664 isphld 19999 smadiadetr 20481 chfacfisf 20659 chfacfisfcpmat 20660 chcoeffeq 20691 cayhamlem3 20692 tx1stc 21453 ioorcl 23345 coemullem 24006 xrlimcnp 24695 fsumdvdscom 24911 fsumvma 24938 cusgrres 26344 usgredgsscusgredg 26355 clwlkclwwlklem2a 26899 clwwlksext2edg 26923 frgrwopreglem5ALT 27186 frgr2wwlkeu 27191 frgr2wwlk1 27193 grpoidinvlem3 27360 htthlem 27774 atcvat4i 29256 abfmpeld 29454 isarchi3 29741 ordtconnlem1 29970 funpartfun 32050 relowlssretop 33211 ltflcei 33397 neificl 33549 keridl 33831 cvrat4 34729 ps-2 34764 mpaaeu 37720 clcnvlem 37930 iccpartiltu 41358 2pwp1prm 41503 bgoldbtbnd 41697 lmod0rng 41868 lincext1 42243 |
Copyright terms: Public domain | W3C validator |