MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leisorel Structured version   Visualization version   GIF version

Theorem leisorel 13244
Description: Version of isorel 6576 for strictly increasing functions on the reals. (Contributed by Mario Carneiro, 6-Apr-2015.) (Revised by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
leisorel ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ≤ (𝐹𝐷)))

Proof of Theorem leisorel
StepHypRef Expression
1 leiso 13243 . . . 4 ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → (𝐹 Isom < , < (𝐴, 𝐵) ↔ 𝐹 Isom ≤ , ≤ (𝐴, 𝐵)))
21biimpcd 239 . . 3 (𝐹 Isom < , < (𝐴, 𝐵) → ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → 𝐹 Isom ≤ , ≤ (𝐴, 𝐵)))
3 isorel 6576 . . . 4 ((𝐹 Isom ≤ , ≤ (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ≤ (𝐹𝐷)))
43ex 450 . . 3 (𝐹 Isom ≤ , ≤ (𝐴, 𝐵) → ((𝐶𝐴𝐷𝐴) → (𝐶𝐷 ↔ (𝐹𝐶) ≤ (𝐹𝐷))))
52, 4syl6 35 . 2 (𝐹 Isom < , < (𝐴, 𝐵) → ((𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) → ((𝐶𝐴𝐷𝐴) → (𝐶𝐷 ↔ (𝐹𝐶) ≤ (𝐹𝐷)))))
653imp 1256 1 ((𝐹 Isom < , < (𝐴, 𝐵) ∧ (𝐴 ⊆ ℝ*𝐵 ⊆ ℝ*) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝐷 ↔ (𝐹𝐶) ≤ (𝐹𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037  wcel 1990  wss 3574   class class class wbr 4653  cfv 5888   Isom wiso 5889  *cxr 10073   < clt 10074  cle 10075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-le 10080
This theorem is referenced by:  seqcoll  13248  isercolllem2  14396  isercoll  14398  summolem2a  14446  prodmolem2a  14664  xrhmeo  22745  fourierdlem52  40375
  Copyright terms: Public domain W3C validator