Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem52 Structured version   Visualization version   GIF version

Theorem fourierdlem52 40375
Description: d16:d17,d18:jca |- ( ph -> ( ( S 0) ≤ 𝐴𝐴 ≤ (𝑆 0 ) ) ) . (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem52.tf (𝜑𝑇 ∈ Fin)
fourierdlem52.n 𝑁 = ((#‘𝑇) − 1)
fourierdlem52.s 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇))
fourierdlem52.a (𝜑𝐴 ∈ ℝ)
fourierdlem52.b (𝜑𝐵 ∈ ℝ)
fourierdlem52.t (𝜑𝑇 ⊆ (𝐴[,]𝐵))
fourierdlem52.at (𝜑𝐴𝑇)
fourierdlem52.bt (𝜑𝐵𝑇)
Assertion
Ref Expression
fourierdlem52 (𝜑 → ((𝑆:(0...𝑁)⟶(𝐴[,]𝐵) ∧ (𝑆‘0) = 𝐴) ∧ (𝑆𝑁) = 𝐵))
Distinct variable groups:   𝑓,𝑁   𝑆,𝑓   𝑇,𝑓   𝜑,𝑓
Allowed substitution hints:   𝐴(𝑓)   𝐵(𝑓)

Proof of Theorem fourierdlem52
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem52.tf . . . . 5 (𝜑𝑇 ∈ Fin)
2 fourierdlem52.t . . . . . 6 (𝜑𝑇 ⊆ (𝐴[,]𝐵))
3 fourierdlem52.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
4 fourierdlem52.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
53, 4iccssred 39727 . . . . . 6 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
62, 5sstrd 3613 . . . . 5 (𝜑𝑇 ⊆ ℝ)
7 fourierdlem52.s . . . . 5 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇))
8 fourierdlem52.n . . . . 5 𝑁 = ((#‘𝑇) − 1)
91, 6, 7, 8fourierdlem36 40360 . . . 4 (𝜑𝑆 Isom < , < ((0...𝑁), 𝑇))
10 isof1o 6573 . . . 4 (𝑆 Isom < , < ((0...𝑁), 𝑇) → 𝑆:(0...𝑁)–1-1-onto𝑇)
11 f1of 6137 . . . 4 (𝑆:(0...𝑁)–1-1-onto𝑇𝑆:(0...𝑁)⟶𝑇)
129, 10, 113syl 18 . . 3 (𝜑𝑆:(0...𝑁)⟶𝑇)
1312, 2fssd 6057 . 2 (𝜑𝑆:(0...𝑁)⟶(𝐴[,]𝐵))
14 f1ofo 6144 . . . . . 6 (𝑆:(0...𝑁)–1-1-onto𝑇𝑆:(0...𝑁)–onto𝑇)
159, 10, 143syl 18 . . . . 5 (𝜑𝑆:(0...𝑁)–onto𝑇)
16 fourierdlem52.at . . . . 5 (𝜑𝐴𝑇)
17 foelrn 6378 . . . . 5 ((𝑆:(0...𝑁)–onto𝑇𝐴𝑇) → ∃𝑗 ∈ (0...𝑁)𝐴 = (𝑆𝑗))
1815, 16, 17syl2anc 693 . . . 4 (𝜑 → ∃𝑗 ∈ (0...𝑁)𝐴 = (𝑆𝑗))
19 elfzle1 12344 . . . . . . . . 9 (𝑗 ∈ (0...𝑁) → 0 ≤ 𝑗)
2019adantl 482 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑁)) → 0 ≤ 𝑗)
219adantr 481 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑁)) → 𝑆 Isom < , < ((0...𝑁), 𝑇))
22 ressxr 10083 . . . . . . . . . . . 12 ℝ ⊆ ℝ*
236, 22syl6ss 3615 . . . . . . . . . . 11 (𝜑𝑇 ⊆ ℝ*)
2423adantr 481 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑁)) → 𝑇 ⊆ ℝ*)
25 fzssz 12343 . . . . . . . . . . 11 (0...𝑁) ⊆ ℤ
26 zssre 11384 . . . . . . . . . . . 12 ℤ ⊆ ℝ
2726, 22sstri 3612 . . . . . . . . . . 11 ℤ ⊆ ℝ*
2825, 27sstri 3612 . . . . . . . . . 10 (0...𝑁) ⊆ ℝ*
2924, 28jctil 560 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑁)) → ((0...𝑁) ⊆ ℝ*𝑇 ⊆ ℝ*))
30 hashcl 13147 . . . . . . . . . . . . . . . 16 (𝑇 ∈ Fin → (#‘𝑇) ∈ ℕ0)
311, 30syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (#‘𝑇) ∈ ℕ0)
32 ne0i 3921 . . . . . . . . . . . . . . . . 17 (𝐴𝑇𝑇 ≠ ∅)
3316, 32syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑇 ≠ ∅)
34 hashge1 13178 . . . . . . . . . . . . . . . 16 ((𝑇 ∈ Fin ∧ 𝑇 ≠ ∅) → 1 ≤ (#‘𝑇))
351, 33, 34syl2anc 693 . . . . . . . . . . . . . . 15 (𝜑 → 1 ≤ (#‘𝑇))
36 elnnnn0c 11338 . . . . . . . . . . . . . . 15 ((#‘𝑇) ∈ ℕ ↔ ((#‘𝑇) ∈ ℕ0 ∧ 1 ≤ (#‘𝑇)))
3731, 35, 36sylanbrc 698 . . . . . . . . . . . . . 14 (𝜑 → (#‘𝑇) ∈ ℕ)
38 nnm1nn0 11334 . . . . . . . . . . . . . 14 ((#‘𝑇) ∈ ℕ → ((#‘𝑇) − 1) ∈ ℕ0)
3937, 38syl 17 . . . . . . . . . . . . 13 (𝜑 → ((#‘𝑇) − 1) ∈ ℕ0)
408, 39syl5eqel 2705 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ0)
41 nn0uz 11722 . . . . . . . . . . . 12 0 = (ℤ‘0)
4240, 41syl6eleq 2711 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ‘0))
43 eluzfz1 12348 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘0) → 0 ∈ (0...𝑁))
4442, 43syl 17 . . . . . . . . . 10 (𝜑 → 0 ∈ (0...𝑁))
4544anim1i 592 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...𝑁)) → (0 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑁)))
46 leisorel 13244 . . . . . . . . 9 ((𝑆 Isom < , < ((0...𝑁), 𝑇) ∧ ((0...𝑁) ⊆ ℝ*𝑇 ⊆ ℝ*) ∧ (0 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑁))) → (0 ≤ 𝑗 ↔ (𝑆‘0) ≤ (𝑆𝑗)))
4721, 29, 45, 46syl3anc 1326 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑁)) → (0 ≤ 𝑗 ↔ (𝑆‘0) ≤ (𝑆𝑗)))
4820, 47mpbid 222 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑆‘0) ≤ (𝑆𝑗))
49483adant3 1081 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐴 = (𝑆𝑗)) → (𝑆‘0) ≤ (𝑆𝑗))
50 eqcom 2629 . . . . . . . 8 (𝐴 = (𝑆𝑗) ↔ (𝑆𝑗) = 𝐴)
5150biimpi 206 . . . . . . 7 (𝐴 = (𝑆𝑗) → (𝑆𝑗) = 𝐴)
52513ad2ant3 1084 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐴 = (𝑆𝑗)) → (𝑆𝑗) = 𝐴)
5349, 52breqtrd 4679 . . . . 5 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐴 = (𝑆𝑗)) → (𝑆‘0) ≤ 𝐴)
5453rexlimdv3a 3033 . . . 4 (𝜑 → (∃𝑗 ∈ (0...𝑁)𝐴 = (𝑆𝑗) → (𝑆‘0) ≤ 𝐴))
5518, 54mpd 15 . . 3 (𝜑 → (𝑆‘0) ≤ 𝐴)
563rexrd 10089 . . . 4 (𝜑𝐴 ∈ ℝ*)
574rexrd 10089 . . . 4 (𝜑𝐵 ∈ ℝ*)
5813, 44ffvelrnd 6360 . . . 4 (𝜑 → (𝑆‘0) ∈ (𝐴[,]𝐵))
59 iccgelb 12230 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑆‘0) ∈ (𝐴[,]𝐵)) → 𝐴 ≤ (𝑆‘0))
6056, 57, 58, 59syl3anc 1326 . . 3 (𝜑𝐴 ≤ (𝑆‘0))
615, 58sseldd 3604 . . . 4 (𝜑 → (𝑆‘0) ∈ ℝ)
6261, 3letri3d 10179 . . 3 (𝜑 → ((𝑆‘0) = 𝐴 ↔ ((𝑆‘0) ≤ 𝐴𝐴 ≤ (𝑆‘0))))
6355, 60, 62mpbir2and 957 . 2 (𝜑 → (𝑆‘0) = 𝐴)
64 eluzfz2 12349 . . . . . 6 (𝑁 ∈ (ℤ‘0) → 𝑁 ∈ (0...𝑁))
6542, 64syl 17 . . . . 5 (𝜑𝑁 ∈ (0...𝑁))
6613, 65ffvelrnd 6360 . . . 4 (𝜑 → (𝑆𝑁) ∈ (𝐴[,]𝐵))
67 iccleub 12229 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑆𝑁) ∈ (𝐴[,]𝐵)) → (𝑆𝑁) ≤ 𝐵)
6856, 57, 66, 67syl3anc 1326 . . 3 (𝜑 → (𝑆𝑁) ≤ 𝐵)
69 fourierdlem52.bt . . . . 5 (𝜑𝐵𝑇)
70 foelrn 6378 . . . . 5 ((𝑆:(0...𝑁)–onto𝑇𝐵𝑇) → ∃𝑗 ∈ (0...𝑁)𝐵 = (𝑆𝑗))
7115, 69, 70syl2anc 693 . . . 4 (𝜑 → ∃𝑗 ∈ (0...𝑁)𝐵 = (𝑆𝑗))
72 simp3 1063 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐵 = (𝑆𝑗)) → 𝐵 = (𝑆𝑗))
73 elfzle2 12345 . . . . . . . 8 (𝑗 ∈ (0...𝑁) → 𝑗𝑁)
74733ad2ant2 1083 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐵 = (𝑆𝑗)) → 𝑗𝑁)
7593ad2ant1 1082 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐵 = (𝑆𝑗)) → 𝑆 Isom < , < ((0...𝑁), 𝑇))
76293adant3 1081 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐵 = (𝑆𝑗)) → ((0...𝑁) ⊆ ℝ*𝑇 ⊆ ℝ*))
77 simp2 1062 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐵 = (𝑆𝑗)) → 𝑗 ∈ (0...𝑁))
78653ad2ant1 1082 . . . . . . . 8 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐵 = (𝑆𝑗)) → 𝑁 ∈ (0...𝑁))
79 leisorel 13244 . . . . . . . 8 ((𝑆 Isom < , < ((0...𝑁), 𝑇) ∧ ((0...𝑁) ⊆ ℝ*𝑇 ⊆ ℝ*) ∧ (𝑗 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...𝑁))) → (𝑗𝑁 ↔ (𝑆𝑗) ≤ (𝑆𝑁)))
8075, 76, 77, 78, 79syl112anc 1330 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐵 = (𝑆𝑗)) → (𝑗𝑁 ↔ (𝑆𝑗) ≤ (𝑆𝑁)))
8174, 80mpbid 222 . . . . . 6 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐵 = (𝑆𝑗)) → (𝑆𝑗) ≤ (𝑆𝑁))
8272, 81eqbrtrd 4675 . . . . 5 ((𝜑𝑗 ∈ (0...𝑁) ∧ 𝐵 = (𝑆𝑗)) → 𝐵 ≤ (𝑆𝑁))
8382rexlimdv3a 3033 . . . 4 (𝜑 → (∃𝑗 ∈ (0...𝑁)𝐵 = (𝑆𝑗) → 𝐵 ≤ (𝑆𝑁)))
8471, 83mpd 15 . . 3 (𝜑𝐵 ≤ (𝑆𝑁))
855, 66sseldd 3604 . . . 4 (𝜑 → (𝑆𝑁) ∈ ℝ)
8685, 4letri3d 10179 . . 3 (𝜑 → ((𝑆𝑁) = 𝐵 ↔ ((𝑆𝑁) ≤ 𝐵𝐵 ≤ (𝑆𝑁))))
8768, 84, 86mpbir2and 957 . 2 (𝜑 → (𝑆𝑁) = 𝐵)
8813, 63, 87jca31 557 1 (𝜑 → ((𝑆:(0...𝑁)⟶(𝐴[,]𝐵) ∧ (𝑆‘0) = 𝐴) ∧ (𝑆𝑁) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wrex 2913  wss 3574  c0 3915   class class class wbr 4653  cio 5849  wf 5884  ontowfo 5886  1-1-ontowf1o 5887  cfv 5888   Isom wiso 5889  (class class class)co 6650  Fincfn 7955  cr 9935  0cc0 9936  1c1 9937  *cxr 10073   < clt 10074  cle 10075  cmin 10266  cn 11020  0cn0 11292  cz 11377  cuz 11687  [,]cicc 12178  ...cfz 12326  #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-icc 12182  df-fz 12327  df-hash 13118
This theorem is referenced by:  fourierdlem103  40426  fourierdlem104  40427
  Copyright terms: Public domain W3C validator