| Step | Hyp | Ref
| Expression |
| 1 | | seqcoll.3 |
. 2
⊢ (𝜑 → 𝑁 ∈ (1...(#‘𝐴))) |
| 2 | | elfznn 12370 |
. . . 4
⊢ (𝑁 ∈ (1...(#‘𝐴)) → 𝑁 ∈ ℕ) |
| 3 | 1, 2 | syl 17 |
. . 3
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 4 | | eleq1 2689 |
. . . . . 6
⊢ (𝑦 = 1 → (𝑦 ∈ (1...(#‘𝐴)) ↔ 1 ∈ (1...(#‘𝐴)))) |
| 5 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑦 = 1 → (𝐺‘𝑦) = (𝐺‘1)) |
| 6 | 5 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑦 = 1 → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq𝑀( + , 𝐹)‘(𝐺‘1))) |
| 7 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑦 = 1 → (seq1( + , 𝐻)‘𝑦) = (seq1( + , 𝐻)‘1)) |
| 8 | 6, 7 | eqeq12d 2637 |
. . . . . 6
⊢ (𝑦 = 1 → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦) ↔ (seq𝑀( + , 𝐹)‘(𝐺‘1)) = (seq1( + , 𝐻)‘1))) |
| 9 | 4, 8 | imbi12d 334 |
. . . . 5
⊢ (𝑦 = 1 → ((𝑦 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦)) ↔ (1 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘1)) = (seq1( + , 𝐻)‘1)))) |
| 10 | 9 | imbi2d 330 |
. . . 4
⊢ (𝑦 = 1 → ((𝜑 → (𝑦 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦))) ↔ (𝜑 → (1 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘1)) = (seq1( + , 𝐻)‘1))))) |
| 11 | | eleq1 2689 |
. . . . . 6
⊢ (𝑦 = 𝑚 → (𝑦 ∈ (1...(#‘𝐴)) ↔ 𝑚 ∈ (1...(#‘𝐴)))) |
| 12 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑦 = 𝑚 → (𝐺‘𝑦) = (𝐺‘𝑚)) |
| 13 | 12 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑦 = 𝑚 → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq𝑀( + , 𝐹)‘(𝐺‘𝑚))) |
| 14 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑦 = 𝑚 → (seq1( + , 𝐻)‘𝑦) = (seq1( + , 𝐻)‘𝑚)) |
| 15 | 13, 14 | eqeq12d 2637 |
. . . . . 6
⊢ (𝑦 = 𝑚 → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦) ↔ (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚))) |
| 16 | 11, 15 | imbi12d 334 |
. . . . 5
⊢ (𝑦 = 𝑚 → ((𝑦 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦)) ↔ (𝑚 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚)))) |
| 17 | 16 | imbi2d 330 |
. . . 4
⊢ (𝑦 = 𝑚 → ((𝜑 → (𝑦 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦))) ↔ (𝜑 → (𝑚 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚))))) |
| 18 | | eleq1 2689 |
. . . . . 6
⊢ (𝑦 = (𝑚 + 1) → (𝑦 ∈ (1...(#‘𝐴)) ↔ (𝑚 + 1) ∈ (1...(#‘𝐴)))) |
| 19 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑦 = (𝑚 + 1) → (𝐺‘𝑦) = (𝐺‘(𝑚 + 1))) |
| 20 | 19 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑦 = (𝑚 + 1) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1)))) |
| 21 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑦 = (𝑚 + 1) → (seq1( + , 𝐻)‘𝑦) = (seq1( + , 𝐻)‘(𝑚 + 1))) |
| 22 | 20, 21 | eqeq12d 2637 |
. . . . . 6
⊢ (𝑦 = (𝑚 + 1) → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦) ↔ (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1)))) |
| 23 | 18, 22 | imbi12d 334 |
. . . . 5
⊢ (𝑦 = (𝑚 + 1) → ((𝑦 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦)) ↔ ((𝑚 + 1) ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1))))) |
| 24 | 23 | imbi2d 330 |
. . . 4
⊢ (𝑦 = (𝑚 + 1) → ((𝜑 → (𝑦 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦))) ↔ (𝜑 → ((𝑚 + 1) ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1)))))) |
| 25 | | eleq1 2689 |
. . . . . 6
⊢ (𝑦 = 𝑁 → (𝑦 ∈ (1...(#‘𝐴)) ↔ 𝑁 ∈ (1...(#‘𝐴)))) |
| 26 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑦 = 𝑁 → (𝐺‘𝑦) = (𝐺‘𝑁)) |
| 27 | 26 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑦 = 𝑁 → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq𝑀( + , 𝐹)‘(𝐺‘𝑁))) |
| 28 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑦 = 𝑁 → (seq1( + , 𝐻)‘𝑦) = (seq1( + , 𝐻)‘𝑁)) |
| 29 | 27, 28 | eqeq12d 2637 |
. . . . . 6
⊢ (𝑦 = 𝑁 → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦) ↔ (seq𝑀( + , 𝐹)‘(𝐺‘𝑁)) = (seq1( + , 𝐻)‘𝑁))) |
| 30 | 25, 29 | imbi12d 334 |
. . . . 5
⊢ (𝑦 = 𝑁 → ((𝑦 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦)) ↔ (𝑁 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑁)) = (seq1( + , 𝐻)‘𝑁)))) |
| 31 | 30 | imbi2d 330 |
. . . 4
⊢ (𝑦 = 𝑁 → ((𝜑 → (𝑦 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑦)) = (seq1( + , 𝐻)‘𝑦))) ↔ (𝜑 → (𝑁 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑁)) = (seq1( + , 𝐻)‘𝑁))))) |
| 32 | | seqcoll.1 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑆) → (𝑍 + 𝑘) = 𝑘) |
| 33 | | seqcoll.a |
. . . . . . . . 9
⊢ (𝜑 → 𝑍 ∈ 𝑆) |
| 34 | | seqcoll.4 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) |
| 35 | | seqcoll.2 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺 Isom < , < ((1...(#‘𝐴)), 𝐴)) |
| 36 | | isof1o 6573 |
. . . . . . . . . . . . 13
⊢ (𝐺 Isom < , <
((1...(#‘𝐴)), 𝐴) → 𝐺:(1...(#‘𝐴))–1-1-onto→𝐴) |
| 37 | 35, 36 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺:(1...(#‘𝐴))–1-1-onto→𝐴) |
| 38 | | f1of 6137 |
. . . . . . . . . . . 12
⊢ (𝐺:(1...(#‘𝐴))–1-1-onto→𝐴 → 𝐺:(1...(#‘𝐴))⟶𝐴) |
| 39 | 37, 38 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺:(1...(#‘𝐴))⟶𝐴) |
| 40 | | elfzuz2 12346 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ (1...(#‘𝐴)) → (#‘𝐴) ∈
(ℤ≥‘1)) |
| 41 | 1, 40 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (#‘𝐴) ∈
(ℤ≥‘1)) |
| 42 | | eluzfz1 12348 |
. . . . . . . . . . . 12
⊢
((#‘𝐴) ∈
(ℤ≥‘1) → 1 ∈ (1...(#‘𝐴))) |
| 43 | 41, 42 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ∈
(1...(#‘𝐴))) |
| 44 | 39, 43 | ffvelrnd 6360 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺‘1) ∈ 𝐴) |
| 45 | 34, 44 | sseldd 3604 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺‘1) ∈
(ℤ≥‘𝑀)) |
| 46 | | eluzle 11700 |
. . . . . . . . . . . . 13
⊢
((#‘𝐴) ∈
(ℤ≥‘1) → 1 ≤ (#‘𝐴)) |
| 47 | 41, 46 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ≤ (#‘𝐴)) |
| 48 | | elfzelz 12342 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (1...(#‘𝐴)) → 𝑘 ∈ ℤ) |
| 49 | 48 | ssriv 3607 |
. . . . . . . . . . . . . . . 16
⊢
(1...(#‘𝐴))
⊆ ℤ |
| 50 | | zssre 11384 |
. . . . . . . . . . . . . . . 16
⊢ ℤ
⊆ ℝ |
| 51 | 49, 50 | sstri 3612 |
. . . . . . . . . . . . . . 15
⊢
(1...(#‘𝐴))
⊆ ℝ |
| 52 | 51 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (1...(#‘𝐴)) ⊆
ℝ) |
| 53 | | ressxr 10083 |
. . . . . . . . . . . . . 14
⊢ ℝ
⊆ ℝ* |
| 54 | 52, 53 | syl6ss 3615 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (1...(#‘𝐴)) ⊆
ℝ*) |
| 55 | | eluzelre 11698 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑘 ∈ ℝ) |
| 56 | 55 | ssriv 3607 |
. . . . . . . . . . . . . . 15
⊢
(ℤ≥‘𝑀) ⊆ ℝ |
| 57 | 34, 56 | syl6ss 3615 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 58 | 57, 53 | syl6ss 3615 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ⊆
ℝ*) |
| 59 | | eluzfz2 12349 |
. . . . . . . . . . . . . 14
⊢
((#‘𝐴) ∈
(ℤ≥‘1) → (#‘𝐴) ∈ (1...(#‘𝐴))) |
| 60 | 41, 59 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (#‘𝐴) ∈ (1...(#‘𝐴))) |
| 61 | | leisorel 13244 |
. . . . . . . . . . . . 13
⊢ ((𝐺 Isom < , <
((1...(#‘𝐴)), 𝐴) ∧ ((1...(#‘𝐴)) ⊆ ℝ*
∧ 𝐴 ⊆
ℝ*) ∧ (1 ∈ (1...(#‘𝐴)) ∧ (#‘𝐴) ∈ (1...(#‘𝐴)))) → (1 ≤ (#‘𝐴) ↔ (𝐺‘1) ≤ (𝐺‘(#‘𝐴)))) |
| 62 | 35, 54, 58, 43, 60, 61 | syl122anc 1335 |
. . . . . . . . . . . 12
⊢ (𝜑 → (1 ≤ (#‘𝐴) ↔ (𝐺‘1) ≤ (𝐺‘(#‘𝐴)))) |
| 63 | 47, 62 | mpbid 222 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐺‘1) ≤ (𝐺‘(#‘𝐴))) |
| 64 | 39, 60 | ffvelrnd 6360 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐺‘(#‘𝐴)) ∈ 𝐴) |
| 65 | 34, 64 | sseldd 3604 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐺‘(#‘𝐴)) ∈
(ℤ≥‘𝑀)) |
| 66 | | eluzelz 11697 |
. . . . . . . . . . . . 13
⊢ ((𝐺‘(#‘𝐴)) ∈
(ℤ≥‘𝑀) → (𝐺‘(#‘𝐴)) ∈ ℤ) |
| 67 | 65, 66 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐺‘(#‘𝐴)) ∈ ℤ) |
| 68 | | elfz5 12334 |
. . . . . . . . . . . 12
⊢ (((𝐺‘1) ∈
(ℤ≥‘𝑀) ∧ (𝐺‘(#‘𝐴)) ∈ ℤ) → ((𝐺‘1) ∈ (𝑀...(𝐺‘(#‘𝐴))) ↔ (𝐺‘1) ≤ (𝐺‘(#‘𝐴)))) |
| 69 | 45, 67, 68 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐺‘1) ∈ (𝑀...(𝐺‘(#‘𝐴))) ↔ (𝐺‘1) ≤ (𝐺‘(#‘𝐴)))) |
| 70 | 63, 69 | mpbird 247 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺‘1) ∈ (𝑀...(𝐺‘(#‘𝐴)))) |
| 71 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝐺‘1) → (𝐹‘𝑘) = (𝐹‘(𝐺‘1))) |
| 72 | 71 | eleq1d 2686 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝐺‘1) → ((𝐹‘𝑘) ∈ 𝑆 ↔ (𝐹‘(𝐺‘1)) ∈ 𝑆)) |
| 73 | 72 | imbi2d 330 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝐺‘1) → ((𝜑 → (𝐹‘𝑘) ∈ 𝑆) ↔ (𝜑 → (𝐹‘(𝐺‘1)) ∈ 𝑆))) |
| 74 | | seqcoll.5 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝐺‘(#‘𝐴)))) → (𝐹‘𝑘) ∈ 𝑆) |
| 75 | 74 | expcom 451 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (𝑀...(𝐺‘(#‘𝐴))) → (𝜑 → (𝐹‘𝑘) ∈ 𝑆)) |
| 76 | 73, 75 | vtoclga 3272 |
. . . . . . . . . 10
⊢ ((𝐺‘1) ∈ (𝑀...(𝐺‘(#‘𝐴))) → (𝜑 → (𝐹‘(𝐺‘1)) ∈ 𝑆)) |
| 77 | 70, 76 | mpcom 38 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘(𝐺‘1)) ∈ 𝑆) |
| 78 | | eluzelz 11697 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺‘1) ∈
(ℤ≥‘𝑀) → (𝐺‘1) ∈ ℤ) |
| 79 | 45, 78 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐺‘1) ∈ ℤ) |
| 80 | | peano2zm 11420 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺‘1) ∈ ℤ →
((𝐺‘1) − 1)
∈ ℤ) |
| 81 | 79, 80 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐺‘1) − 1) ∈
ℤ) |
| 82 | 81 | zred 11482 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝐺‘1) − 1) ∈
ℝ) |
| 83 | 79 | zred 11482 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐺‘1) ∈ ℝ) |
| 84 | 67 | zred 11482 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐺‘(#‘𝐴)) ∈ ℝ) |
| 85 | 83 | lem1d 10957 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝐺‘1) − 1) ≤ (𝐺‘1)) |
| 86 | 82, 83, 84, 85, 63 | letrd 10194 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐺‘1) − 1) ≤ (𝐺‘(#‘𝐴))) |
| 87 | | eluz 11701 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺‘1) − 1) ∈
ℤ ∧ (𝐺‘(#‘𝐴)) ∈ ℤ) → ((𝐺‘(#‘𝐴)) ∈
(ℤ≥‘((𝐺‘1) − 1)) ↔ ((𝐺‘1) − 1) ≤ (𝐺‘(#‘𝐴)))) |
| 88 | 81, 67, 87 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐺‘(#‘𝐴)) ∈
(ℤ≥‘((𝐺‘1) − 1)) ↔ ((𝐺‘1) − 1) ≤ (𝐺‘(#‘𝐴)))) |
| 89 | 86, 88 | mpbird 247 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐺‘(#‘𝐴)) ∈
(ℤ≥‘((𝐺‘1) − 1))) |
| 90 | | fzss2 12381 |
. . . . . . . . . . . . 13
⊢ ((𝐺‘(#‘𝐴)) ∈
(ℤ≥‘((𝐺‘1) − 1)) → (𝑀...((𝐺‘1) − 1)) ⊆ (𝑀...(𝐺‘(#‘𝐴)))) |
| 91 | 89, 90 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑀...((𝐺‘1) − 1)) ⊆ (𝑀...(𝐺‘(#‘𝐴)))) |
| 92 | 91 | sselda 3603 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...((𝐺‘1) − 1))) → 𝑘 ∈ (𝑀...(𝐺‘(#‘𝐴)))) |
| 93 | | eluzel2 11692 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺‘1) ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| 94 | 45, 93 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 95 | | elfzm11 12411 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℤ ∧ (𝐺‘1) ∈ ℤ) →
(𝑘 ∈ (𝑀...((𝐺‘1) − 1)) ↔ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < (𝐺‘1)))) |
| 96 | 94, 79, 95 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑘 ∈ (𝑀...((𝐺‘1) − 1)) ↔ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < (𝐺‘1)))) |
| 97 | | simp3 1063 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < (𝐺‘1)) → 𝑘 < (𝐺‘1)) |
| 98 | | f1ocnv 6149 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐺:(1...(#‘𝐴))–1-1-onto→𝐴 → ◡𝐺:𝐴–1-1-onto→(1...(#‘𝐴))) |
| 99 | 37, 98 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ◡𝐺:𝐴–1-1-onto→(1...(#‘𝐴))) |
| 100 | | f1of 6137 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (◡𝐺:𝐴–1-1-onto→(1...(#‘𝐴)) → ◡𝐺:𝐴⟶(1...(#‘𝐴))) |
| 101 | 99, 100 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ◡𝐺:𝐴⟶(1...(#‘𝐴))) |
| 102 | 101 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (◡𝐺‘𝑘) ∈ (1...(#‘𝐴))) |
| 103 | | elfznn 12370 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((◡𝐺‘𝑘) ∈ (1...(#‘𝐴)) → (◡𝐺‘𝑘) ∈ ℕ) |
| 104 | 102, 103 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (◡𝐺‘𝑘) ∈ ℕ) |
| 105 | 104 | nnge1d 11063 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 1 ≤ (◡𝐺‘𝑘)) |
| 106 | 35 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐺 Isom < , < ((1...(#‘𝐴)), 𝐴)) |
| 107 | 54 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (1...(#‘𝐴)) ⊆
ℝ*) |
| 108 | 58 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐴 ⊆
ℝ*) |
| 109 | 43 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 1 ∈ (1...(#‘𝐴))) |
| 110 | | leisorel 13244 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 Isom < , <
((1...(#‘𝐴)), 𝐴) ∧ ((1...(#‘𝐴)) ⊆ ℝ*
∧ 𝐴 ⊆
ℝ*) ∧ (1 ∈ (1...(#‘𝐴)) ∧ (◡𝐺‘𝑘) ∈ (1...(#‘𝐴)))) → (1 ≤ (◡𝐺‘𝑘) ↔ (𝐺‘1) ≤ (𝐺‘(◡𝐺‘𝑘)))) |
| 111 | 106, 107,
108, 109, 102, 110 | syl122anc 1335 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (1 ≤ (◡𝐺‘𝑘) ↔ (𝐺‘1) ≤ (𝐺‘(◡𝐺‘𝑘)))) |
| 112 | 105, 111 | mpbid 222 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐺‘1) ≤ (𝐺‘(◡𝐺‘𝑘))) |
| 113 | | f1ocnvfv2 6533 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺:(1...(#‘𝐴))–1-1-onto→𝐴 ∧ 𝑘 ∈ 𝐴) → (𝐺‘(◡𝐺‘𝑘)) = 𝑘) |
| 114 | 37, 113 | sylan 488 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐺‘(◡𝐺‘𝑘)) = 𝑘) |
| 115 | 112, 114 | breqtrd 4679 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐺‘1) ≤ 𝑘) |
| 116 | 83 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐺‘1) ∈ ℝ) |
| 117 | 57 | sselda 3603 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ ℝ) |
| 118 | 116, 117 | lenltd 10183 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝐺‘1) ≤ 𝑘 ↔ ¬ 𝑘 < (𝐺‘1))) |
| 119 | 115, 118 | mpbid 222 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ¬ 𝑘 < (𝐺‘1)) |
| 120 | 119 | ex 450 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑘 ∈ 𝐴 → ¬ 𝑘 < (𝐺‘1))) |
| 121 | 120 | con2d 129 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑘 < (𝐺‘1) → ¬ 𝑘 ∈ 𝐴)) |
| 122 | 97, 121 | syl5 34 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < (𝐺‘1)) → ¬ 𝑘 ∈ 𝐴)) |
| 123 | 96, 122 | sylbid 230 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑘 ∈ (𝑀...((𝐺‘1) − 1)) → ¬ 𝑘 ∈ 𝐴)) |
| 124 | 123 | imp 445 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...((𝐺‘1) − 1))) → ¬ 𝑘 ∈ 𝐴) |
| 125 | 92, 124 | eldifd 3585 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...((𝐺‘1) − 1))) → 𝑘 ∈ ((𝑀...(𝐺‘(#‘𝐴))) ∖ 𝐴)) |
| 126 | | seqcoll.6 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀...(𝐺‘(#‘𝐴))) ∖ 𝐴)) → (𝐹‘𝑘) = 𝑍) |
| 127 | 125, 126 | syldan 487 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...((𝐺‘1) − 1))) → (𝐹‘𝑘) = 𝑍) |
| 128 | 32, 33, 45, 77, 127 | seqid 12846 |
. . . . . . . 8
⊢ (𝜑 → (seq𝑀( + , 𝐹) ↾
(ℤ≥‘(𝐺‘1))) = seq(𝐺‘1)( + , 𝐹)) |
| 129 | 128 | fveq1d 6193 |
. . . . . . 7
⊢ (𝜑 → ((seq𝑀( + , 𝐹) ↾
(ℤ≥‘(𝐺‘1)))‘(𝐺‘1)) = (seq(𝐺‘1)( + , 𝐹)‘(𝐺‘1))) |
| 130 | | uzid 11702 |
. . . . . . . . 9
⊢ ((𝐺‘1) ∈ ℤ →
(𝐺‘1) ∈
(ℤ≥‘(𝐺‘1))) |
| 131 | 79, 130 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝐺‘1) ∈
(ℤ≥‘(𝐺‘1))) |
| 132 | | fvres 6207 |
. . . . . . . 8
⊢ ((𝐺‘1) ∈
(ℤ≥‘(𝐺‘1)) → ((seq𝑀( + , 𝐹) ↾
(ℤ≥‘(𝐺‘1)))‘(𝐺‘1)) = (seq𝑀( + , 𝐹)‘(𝐺‘1))) |
| 133 | 131, 132 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((seq𝑀( + , 𝐹) ↾
(ℤ≥‘(𝐺‘1)))‘(𝐺‘1)) = (seq𝑀( + , 𝐹)‘(𝐺‘1))) |
| 134 | | seq1 12814 |
. . . . . . . . 9
⊢ ((𝐺‘1) ∈ ℤ →
(seq(𝐺‘1)( + , 𝐹)‘(𝐺‘1)) = (𝐹‘(𝐺‘1))) |
| 135 | 79, 134 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (seq(𝐺‘1)( + , 𝐹)‘(𝐺‘1)) = (𝐹‘(𝐺‘1))) |
| 136 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑛 = 1 → (𝐻‘𝑛) = (𝐻‘1)) |
| 137 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 1 → (𝐺‘𝑛) = (𝐺‘1)) |
| 138 | 137 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝑛 = 1 → (𝐹‘(𝐺‘𝑛)) = (𝐹‘(𝐺‘1))) |
| 139 | 136, 138 | eqeq12d 2637 |
. . . . . . . . . . 11
⊢ (𝑛 = 1 → ((𝐻‘𝑛) = (𝐹‘(𝐺‘𝑛)) ↔ (𝐻‘1) = (𝐹‘(𝐺‘1)))) |
| 140 | 139 | imbi2d 330 |
. . . . . . . . . 10
⊢ (𝑛 = 1 → ((𝜑 → (𝐻‘𝑛) = (𝐹‘(𝐺‘𝑛))) ↔ (𝜑 → (𝐻‘1) = (𝐹‘(𝐺‘1))))) |
| 141 | | seqcoll.7 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (1...(#‘𝐴))) → (𝐻‘𝑛) = (𝐹‘(𝐺‘𝑛))) |
| 142 | 141 | expcom 451 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (1...(#‘𝐴)) → (𝜑 → (𝐻‘𝑛) = (𝐹‘(𝐺‘𝑛)))) |
| 143 | 140, 142 | vtoclga 3272 |
. . . . . . . . 9
⊢ (1 ∈
(1...(#‘𝐴)) →
(𝜑 → (𝐻‘1) = (𝐹‘(𝐺‘1)))) |
| 144 | 43, 143 | mpcom 38 |
. . . . . . . 8
⊢ (𝜑 → (𝐻‘1) = (𝐹‘(𝐺‘1))) |
| 145 | 135, 144 | eqtr4d 2659 |
. . . . . . 7
⊢ (𝜑 → (seq(𝐺‘1)( + , 𝐹)‘(𝐺‘1)) = (𝐻‘1)) |
| 146 | 129, 133,
145 | 3eqtr3d 2664 |
. . . . . 6
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺‘1)) = (𝐻‘1)) |
| 147 | | 1z 11407 |
. . . . . . 7
⊢ 1 ∈
ℤ |
| 148 | | seq1 12814 |
. . . . . . 7
⊢ (1 ∈
ℤ → (seq1( + , 𝐻)‘1) = (𝐻‘1)) |
| 149 | 147, 148 | ax-mp 5 |
. . . . . 6
⊢ (seq1(
+ , 𝐻)‘1) = (𝐻‘1) |
| 150 | 146, 149 | syl6eqr 2674 |
. . . . 5
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺‘1)) = (seq1( + , 𝐻)‘1)) |
| 151 | 150 | a1d 25 |
. . . 4
⊢ (𝜑 → (1 ∈
(1...(#‘𝐴)) →
(seq𝑀( + , 𝐹)‘(𝐺‘1)) = (seq1( + , 𝐻)‘1))) |
| 152 | | simplr 792 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → 𝑚 ∈ ℕ) |
| 153 | | nnuz 11723 |
. . . . . . . . . . 11
⊢ ℕ =
(ℤ≥‘1) |
| 154 | 152, 153 | syl6eleq 2711 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → 𝑚 ∈
(ℤ≥‘1)) |
| 155 | | nnz 11399 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℤ) |
| 156 | 155 | ad2antlr 763 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → 𝑚 ∈ ℤ) |
| 157 | | elfzuz3 12339 |
. . . . . . . . . . . 12
⊢ ((𝑚 + 1) ∈ (1...(#‘𝐴)) → (#‘𝐴) ∈
(ℤ≥‘(𝑚 + 1))) |
| 158 | 157 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (#‘𝐴) ∈
(ℤ≥‘(𝑚 + 1))) |
| 159 | | peano2uzr 11743 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℤ ∧
(#‘𝐴) ∈
(ℤ≥‘(𝑚 + 1))) → (#‘𝐴) ∈ (ℤ≥‘𝑚)) |
| 160 | 156, 158,
159 | syl2anc 693 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (#‘𝐴) ∈ (ℤ≥‘𝑚)) |
| 161 | | elfzuzb 12336 |
. . . . . . . . . 10
⊢ (𝑚 ∈ (1...(#‘𝐴)) ↔ (𝑚 ∈ (ℤ≥‘1)
∧ (#‘𝐴) ∈
(ℤ≥‘𝑚))) |
| 162 | 154, 160,
161 | sylanbrc 698 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → 𝑚 ∈ (1...(#‘𝐴))) |
| 163 | 162 | ex 450 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑚 + 1) ∈ (1...(#‘𝐴)) → 𝑚 ∈ (1...(#‘𝐴)))) |
| 164 | 163 | imim1d 82 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑚 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚)) → ((𝑚 + 1) ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚)))) |
| 165 | | oveq1 6657 |
. . . . . . . . . 10
⊢
((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚) → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) + (𝐻‘(𝑚 + 1))) = ((seq1( + , 𝐻)‘𝑚) + (𝐻‘(𝑚 + 1)))) |
| 166 | | simpll 790 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → 𝜑) |
| 167 | | seqcoll.1b |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑆) → (𝑘 + 𝑍) = 𝑘) |
| 168 | 166, 167 | sylan 488 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) ∧ 𝑘 ∈ 𝑆) → (𝑘 + 𝑍) = 𝑘) |
| 169 | 34 | ad2antrr 762 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → 𝐴 ⊆ (ℤ≥‘𝑀)) |
| 170 | 39 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → 𝐺:(1...(#‘𝐴))⟶𝐴) |
| 171 | 170, 162 | ffvelrnd 6360 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝐺‘𝑚) ∈ 𝐴) |
| 172 | 169, 171 | sseldd 3604 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝐺‘𝑚) ∈ (ℤ≥‘𝑀)) |
| 173 | | nnre 11027 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℝ) |
| 174 | 173 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → 𝑚 ∈ ℝ) |
| 175 | 174 | ltp1d 10954 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → 𝑚 < (𝑚 + 1)) |
| 176 | 35 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → 𝐺 Isom < , < ((1...(#‘𝐴)), 𝐴)) |
| 177 | | simpr 477 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝑚 + 1) ∈ (1...(#‘𝐴))) |
| 178 | | isorel 6576 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺 Isom < , <
((1...(#‘𝐴)), 𝐴) ∧ (𝑚 ∈ (1...(#‘𝐴)) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴)))) → (𝑚 < (𝑚 + 1) ↔ (𝐺‘𝑚) < (𝐺‘(𝑚 + 1)))) |
| 179 | 176, 162,
177, 178 | syl12anc 1324 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝑚 < (𝑚 + 1) ↔ (𝐺‘𝑚) < (𝐺‘(𝑚 + 1)))) |
| 180 | 175, 179 | mpbid 222 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝐺‘𝑚) < (𝐺‘(𝑚 + 1))) |
| 181 | | eluzelz 11697 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺‘𝑚) ∈ (ℤ≥‘𝑀) → (𝐺‘𝑚) ∈ ℤ) |
| 182 | 172, 181 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝐺‘𝑚) ∈ ℤ) |
| 183 | 170, 177 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝐺‘(𝑚 + 1)) ∈ 𝐴) |
| 184 | 169, 183 | sseldd 3604 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝐺‘(𝑚 + 1)) ∈
(ℤ≥‘𝑀)) |
| 185 | | eluzelz 11697 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺‘(𝑚 + 1)) ∈
(ℤ≥‘𝑀) → (𝐺‘(𝑚 + 1)) ∈ ℤ) |
| 186 | 184, 185 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝐺‘(𝑚 + 1)) ∈ ℤ) |
| 187 | | zltlem1 11430 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐺‘𝑚) ∈ ℤ ∧ (𝐺‘(𝑚 + 1)) ∈ ℤ) → ((𝐺‘𝑚) < (𝐺‘(𝑚 + 1)) ↔ (𝐺‘𝑚) ≤ ((𝐺‘(𝑚 + 1)) − 1))) |
| 188 | 182, 186,
187 | syl2anc 693 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → ((𝐺‘𝑚) < (𝐺‘(𝑚 + 1)) ↔ (𝐺‘𝑚) ≤ ((𝐺‘(𝑚 + 1)) − 1))) |
| 189 | 180, 188 | mpbid 222 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝐺‘𝑚) ≤ ((𝐺‘(𝑚 + 1)) − 1)) |
| 190 | | peano2zm 11420 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺‘(𝑚 + 1)) ∈ ℤ → ((𝐺‘(𝑚 + 1)) − 1) ∈
ℤ) |
| 191 | 186, 190 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → ((𝐺‘(𝑚 + 1)) − 1) ∈
ℤ) |
| 192 | | eluz 11701 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺‘𝑚) ∈ ℤ ∧ ((𝐺‘(𝑚 + 1)) − 1) ∈ ℤ) →
(((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘(𝐺‘𝑚)) ↔ (𝐺‘𝑚) ≤ ((𝐺‘(𝑚 + 1)) − 1))) |
| 193 | 182, 191,
192 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘(𝐺‘𝑚)) ↔ (𝐺‘𝑚) ≤ ((𝐺‘(𝑚 + 1)) − 1))) |
| 194 | 189, 193 | mpbird 247 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → ((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘(𝐺‘𝑚))) |
| 195 | 191 | zred 11482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → ((𝐺‘(𝑚 + 1)) − 1) ∈
ℝ) |
| 196 | 186 | zred 11482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝐺‘(𝑚 + 1)) ∈ ℝ) |
| 197 | 84 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝐺‘(#‘𝐴)) ∈ ℝ) |
| 198 | 196 | lem1d 10957 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → ((𝐺‘(𝑚 + 1)) − 1) ≤ (𝐺‘(𝑚 + 1))) |
| 199 | | elfzle2 12345 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑚 + 1) ∈ (1...(#‘𝐴)) → (𝑚 + 1) ≤ (#‘𝐴)) |
| 200 | 199 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝑚 + 1) ≤ (#‘𝐴)) |
| 201 | 54 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (1...(#‘𝐴)) ⊆
ℝ*) |
| 202 | 58 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → 𝐴 ⊆
ℝ*) |
| 203 | 60 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (#‘𝐴) ∈ (1...(#‘𝐴))) |
| 204 | | leisorel 13244 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐺 Isom < , <
((1...(#‘𝐴)), 𝐴) ∧ ((1...(#‘𝐴)) ⊆ ℝ*
∧ 𝐴 ⊆
ℝ*) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ (#‘𝐴) ∈ (1...(#‘𝐴)))) → ((𝑚 + 1) ≤ (#‘𝐴) ↔ (𝐺‘(𝑚 + 1)) ≤ (𝐺‘(#‘𝐴)))) |
| 205 | 176, 201,
202, 177, 203, 204 | syl122anc 1335 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → ((𝑚 + 1) ≤ (#‘𝐴) ↔ (𝐺‘(𝑚 + 1)) ≤ (𝐺‘(#‘𝐴)))) |
| 206 | 200, 205 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝐺‘(𝑚 + 1)) ≤ (𝐺‘(#‘𝐴))) |
| 207 | 195, 196,
197, 198, 206 | letrd 10194 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → ((𝐺‘(𝑚 + 1)) − 1) ≤ (𝐺‘(#‘𝐴))) |
| 208 | 67 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝐺‘(#‘𝐴)) ∈ ℤ) |
| 209 | | eluz 11701 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐺‘(𝑚 + 1)) − 1) ∈ ℤ ∧ (𝐺‘(#‘𝐴)) ∈ ℤ) →
((𝐺‘(#‘𝐴)) ∈
(ℤ≥‘((𝐺‘(𝑚 + 1)) − 1)) ↔ ((𝐺‘(𝑚 + 1)) − 1) ≤ (𝐺‘(#‘𝐴)))) |
| 210 | 191, 208,
209 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → ((𝐺‘(#‘𝐴)) ∈
(ℤ≥‘((𝐺‘(𝑚 + 1)) − 1)) ↔ ((𝐺‘(𝑚 + 1)) − 1) ≤ (𝐺‘(#‘𝐴)))) |
| 211 | 207, 210 | mpbird 247 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝐺‘(#‘𝐴)) ∈
(ℤ≥‘((𝐺‘(𝑚 + 1)) − 1))) |
| 212 | | uztrn 11704 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐺‘(#‘𝐴)) ∈
(ℤ≥‘((𝐺‘(𝑚 + 1)) − 1)) ∧ ((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘(𝐺‘𝑚))) → (𝐺‘(#‘𝐴)) ∈
(ℤ≥‘(𝐺‘𝑚))) |
| 213 | 211, 194,
212 | syl2anc 693 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝐺‘(#‘𝐴)) ∈
(ℤ≥‘(𝐺‘𝑚))) |
| 214 | | fzss2 12381 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺‘(#‘𝐴)) ∈
(ℤ≥‘(𝐺‘𝑚)) → (𝑀...(𝐺‘𝑚)) ⊆ (𝑀...(𝐺‘(#‘𝐴)))) |
| 215 | 213, 214 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝑀...(𝐺‘𝑚)) ⊆ (𝑀...(𝐺‘(#‘𝐴)))) |
| 216 | 215 | sselda 3603 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) ∧ 𝑘 ∈ (𝑀...(𝐺‘𝑚))) → 𝑘 ∈ (𝑀...(𝐺‘(#‘𝐴)))) |
| 217 | 166, 74 | sylan 488 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) ∧ 𝑘 ∈ (𝑀...(𝐺‘(#‘𝐴)))) → (𝐹‘𝑘) ∈ 𝑆) |
| 218 | 216, 217 | syldan 487 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) ∧ 𝑘 ∈ (𝑀...(𝐺‘𝑚))) → (𝐹‘𝑘) ∈ 𝑆) |
| 219 | | seqcoll.c |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑘 ∈ 𝑆 ∧ 𝑛 ∈ 𝑆)) → (𝑘 + 𝑛) ∈ 𝑆) |
| 220 | 166, 219 | sylan 488 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) ∧ (𝑘 ∈ 𝑆 ∧ 𝑛 ∈ 𝑆)) → (𝑘 + 𝑛) ∈ 𝑆) |
| 221 | 172, 218,
220 | seqcl 12821 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) ∈ 𝑆) |
| 222 | | simplll 798 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) ∧ 𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → 𝜑) |
| 223 | | elfzuz 12338 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1)) → 𝑘 ∈ (ℤ≥‘((𝐺‘𝑚) + 1))) |
| 224 | | peano2uz 11741 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺‘𝑚) ∈ (ℤ≥‘𝑀) → ((𝐺‘𝑚) + 1) ∈
(ℤ≥‘𝑀)) |
| 225 | 172, 224 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → ((𝐺‘𝑚) + 1) ∈
(ℤ≥‘𝑀)) |
| 226 | | uztrn 11704 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈
(ℤ≥‘((𝐺‘𝑚) + 1)) ∧ ((𝐺‘𝑚) + 1) ∈
(ℤ≥‘𝑀)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 227 | 223, 225,
226 | syl2anr 495 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) ∧ 𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 228 | | elfzuz3 12339 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1)) → ((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘𝑘)) |
| 229 | | uztrn 11704 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐺‘(#‘𝐴)) ∈
(ℤ≥‘((𝐺‘(𝑚 + 1)) − 1)) ∧ ((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘𝑘)) → (𝐺‘(#‘𝐴)) ∈
(ℤ≥‘𝑘)) |
| 230 | 211, 228,
229 | syl2an 494 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) ∧ 𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → (𝐺‘(#‘𝐴)) ∈
(ℤ≥‘𝑘)) |
| 231 | | elfzuzb 12336 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (𝑀...(𝐺‘(#‘𝐴))) ↔ (𝑘 ∈ (ℤ≥‘𝑀) ∧ (𝐺‘(#‘𝐴)) ∈
(ℤ≥‘𝑘))) |
| 232 | 227, 230,
231 | sylanbrc 698 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) ∧ 𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → 𝑘 ∈ (𝑀...(𝐺‘(#‘𝐴)))) |
| 233 | | elfzle1 12344 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1)) → ((𝐺‘𝑚) + 1) ≤ 𝑘) |
| 234 | | elfzle2 12345 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1)) → 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1)) |
| 235 | 233, 234 | jca 554 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1)) → (((𝐺‘𝑚) + 1) ≤ 𝑘 ∧ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1))) |
| 236 | 155 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝑚 ∈ ℤ) |
| 237 | 101 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ◡𝐺:𝐴⟶(1...(#‘𝐴))) |
| 238 | | simprr 796 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝑘 ∈ 𝐴) |
| 239 | 237, 238 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (◡𝐺‘𝑘) ∈ (1...(#‘𝐴))) |
| 240 | | elfzelz 12342 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((◡𝐺‘𝑘) ∈ (1...(#‘𝐴)) → (◡𝐺‘𝑘) ∈ ℤ) |
| 241 | 239, 240 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (◡𝐺‘𝑘) ∈ ℤ) |
| 242 | | btwnnz 11453 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑚 ∈ ℤ ∧ 𝑚 < (◡𝐺‘𝑘) ∧ (◡𝐺‘𝑘) < (𝑚 + 1)) → ¬ (◡𝐺‘𝑘) ∈ ℤ) |
| 243 | 242 | 3expib 1268 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 ∈ ℤ → ((𝑚 < (◡𝐺‘𝑘) ∧ (◡𝐺‘𝑘) < (𝑚 + 1)) → ¬ (◡𝐺‘𝑘) ∈ ℤ)) |
| 244 | 243 | con2d 129 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑚 ∈ ℤ → ((◡𝐺‘𝑘) ∈ ℤ → ¬ (𝑚 < (◡𝐺‘𝑘) ∧ (◡𝐺‘𝑘) < (𝑚 + 1)))) |
| 245 | 236, 241,
244 | sylc 65 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ¬ (𝑚 < (◡𝐺‘𝑘) ∧ (◡𝐺‘𝑘) < (𝑚 + 1))) |
| 246 | 35 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝐺 Isom < , < ((1...(#‘𝐴)), 𝐴)) |
| 247 | 162 | adantrr 753 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝑚 ∈ (1...(#‘𝐴))) |
| 248 | | isorel 6576 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐺 Isom < , <
((1...(#‘𝐴)), 𝐴) ∧ (𝑚 ∈ (1...(#‘𝐴)) ∧ (◡𝐺‘𝑘) ∈ (1...(#‘𝐴)))) → (𝑚 < (◡𝐺‘𝑘) ↔ (𝐺‘𝑚) < (𝐺‘(◡𝐺‘𝑘)))) |
| 249 | 246, 247,
239, 248 | syl12anc 1324 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (𝑚 < (◡𝐺‘𝑘) ↔ (𝐺‘𝑚) < (𝐺‘(◡𝐺‘𝑘)))) |
| 250 | 37 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝐺:(1...(#‘𝐴))–1-1-onto→𝐴) |
| 251 | 250, 238,
113 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (𝐺‘(◡𝐺‘𝑘)) = 𝑘) |
| 252 | 251 | breq2d 4665 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ((𝐺‘𝑚) < (𝐺‘(◡𝐺‘𝑘)) ↔ (𝐺‘𝑚) < 𝑘)) |
| 253 | 182 | adantrr 753 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (𝐺‘𝑚) ∈ ℤ) |
| 254 | 34 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝐴 ⊆ (ℤ≥‘𝑀)) |
| 255 | 254, 238 | sseldd 3604 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 256 | | eluzelz 11697 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑘 ∈ ℤ) |
| 257 | 255, 256 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → 𝑘 ∈ ℤ) |
| 258 | | zltp1le 11427 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝐺‘𝑚) ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝐺‘𝑚) < 𝑘 ↔ ((𝐺‘𝑚) + 1) ≤ 𝑘)) |
| 259 | 253, 257,
258 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ((𝐺‘𝑚) < 𝑘 ↔ ((𝐺‘𝑚) + 1) ≤ 𝑘)) |
| 260 | 249, 252,
259 | 3bitrd 294 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (𝑚 < (◡𝐺‘𝑘) ↔ ((𝐺‘𝑚) + 1) ≤ 𝑘)) |
| 261 | 177 | adantrr 753 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (𝑚 + 1) ∈ (1...(#‘𝐴))) |
| 262 | | isorel 6576 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐺 Isom < , <
((1...(#‘𝐴)), 𝐴) ∧ ((◡𝐺‘𝑘) ∈ (1...(#‘𝐴)) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴)))) → ((◡𝐺‘𝑘) < (𝑚 + 1) ↔ (𝐺‘(◡𝐺‘𝑘)) < (𝐺‘(𝑚 + 1)))) |
| 263 | 246, 239,
261, 262 | syl12anc 1324 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ((◡𝐺‘𝑘) < (𝑚 + 1) ↔ (𝐺‘(◡𝐺‘𝑘)) < (𝐺‘(𝑚 + 1)))) |
| 264 | 251 | breq1d 4663 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ((𝐺‘(◡𝐺‘𝑘)) < (𝐺‘(𝑚 + 1)) ↔ 𝑘 < (𝐺‘(𝑚 + 1)))) |
| 265 | 186 | adantrr 753 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (𝐺‘(𝑚 + 1)) ∈ ℤ) |
| 266 | | zltlem1 11430 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑘 ∈ ℤ ∧ (𝐺‘(𝑚 + 1)) ∈ ℤ) → (𝑘 < (𝐺‘(𝑚 + 1)) ↔ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1))) |
| 267 | 257, 265,
266 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → (𝑘 < (𝐺‘(𝑚 + 1)) ↔ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1))) |
| 268 | 263, 264,
267 | 3bitrd 294 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ((◡𝐺‘𝑘) < (𝑚 + 1) ↔ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1))) |
| 269 | 260, 268 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ((𝑚 < (◡𝐺‘𝑘) ∧ (◡𝐺‘𝑘) < (𝑚 + 1)) ↔ (((𝐺‘𝑚) + 1) ≤ 𝑘 ∧ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1)))) |
| 270 | 245, 269 | mtbid 314 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ ((𝑚 + 1) ∈ (1...(#‘𝐴)) ∧ 𝑘 ∈ 𝐴)) → ¬ (((𝐺‘𝑚) + 1) ≤ 𝑘 ∧ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1))) |
| 271 | 270 | expr 643 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝑘 ∈ 𝐴 → ¬ (((𝐺‘𝑚) + 1) ≤ 𝑘 ∧ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1)))) |
| 272 | 271 | con2d 129 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → ((((𝐺‘𝑚) + 1) ≤ 𝑘 ∧ 𝑘 ≤ ((𝐺‘(𝑚 + 1)) − 1)) → ¬ 𝑘 ∈ 𝐴)) |
| 273 | 235, 272 | syl5 34 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1)) → ¬ 𝑘 ∈ 𝐴)) |
| 274 | 273 | imp 445 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) ∧ 𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → ¬ 𝑘 ∈ 𝐴) |
| 275 | 232, 274 | eldifd 3585 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) ∧ 𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → 𝑘 ∈ ((𝑀...(𝐺‘(#‘𝐴))) ∖ 𝐴)) |
| 276 | 222, 275,
126 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) ∧ 𝑘 ∈ (((𝐺‘𝑚) + 1)...((𝐺‘(𝑚 + 1)) − 1))) → (𝐹‘𝑘) = 𝑍) |
| 277 | 168, 172,
194, 221, 276 | seqid2 12847 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq𝑀( + , 𝐹)‘((𝐺‘(𝑚 + 1)) − 1))) |
| 278 | 277 | oveq1d 6665 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) + (𝐹‘(𝐺‘(𝑚 + 1)))) = ((seq𝑀( + , 𝐹)‘((𝐺‘(𝑚 + 1)) − 1)) + (𝐹‘(𝐺‘(𝑚 + 1))))) |
| 279 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = (𝑚 + 1) → (𝐻‘𝑛) = (𝐻‘(𝑚 + 1))) |
| 280 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = (𝑚 + 1) → (𝐺‘𝑛) = (𝐺‘(𝑚 + 1))) |
| 281 | 280 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = (𝑚 + 1) → (𝐹‘(𝐺‘𝑛)) = (𝐹‘(𝐺‘(𝑚 + 1)))) |
| 282 | 279, 281 | eqeq12d 2637 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = (𝑚 + 1) → ((𝐻‘𝑛) = (𝐹‘(𝐺‘𝑛)) ↔ (𝐻‘(𝑚 + 1)) = (𝐹‘(𝐺‘(𝑚 + 1))))) |
| 283 | 282 | imbi2d 330 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (𝑚 + 1) → ((𝜑 → (𝐻‘𝑛) = (𝐹‘(𝐺‘𝑛))) ↔ (𝜑 → (𝐻‘(𝑚 + 1)) = (𝐹‘(𝐺‘(𝑚 + 1)))))) |
| 284 | 283, 142 | vtoclga 3272 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 + 1) ∈ (1...(#‘𝐴)) → (𝜑 → (𝐻‘(𝑚 + 1)) = (𝐹‘(𝐺‘(𝑚 + 1))))) |
| 285 | 284 | impcom 446 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝐻‘(𝑚 + 1)) = (𝐹‘(𝐺‘(𝑚 + 1)))) |
| 286 | 285 | adantlr 751 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝐻‘(𝑚 + 1)) = (𝐹‘(𝐺‘(𝑚 + 1)))) |
| 287 | 286 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) + (𝐻‘(𝑚 + 1))) = ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) + (𝐹‘(𝐺‘(𝑚 + 1))))) |
| 288 | 94 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → 𝑀 ∈ ℤ) |
| 289 | 186 | zcnd 11483 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝐺‘(𝑚 + 1)) ∈ ℂ) |
| 290 | | ax-1cn 9994 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℂ |
| 291 | | npcan 10290 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺‘(𝑚 + 1)) ∈ ℂ ∧ 1 ∈ ℂ)
→ (((𝐺‘(𝑚 + 1)) − 1) + 1) = (𝐺‘(𝑚 + 1))) |
| 292 | 289, 290,
291 | sylancl 694 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (((𝐺‘(𝑚 + 1)) − 1) + 1) = (𝐺‘(𝑚 + 1))) |
| 293 | | uztrn 11704 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘(𝐺‘𝑚)) ∧ (𝐺‘𝑚) ∈ (ℤ≥‘𝑀)) → ((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘𝑀)) |
| 294 | 194, 172,
293 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → ((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘𝑀)) |
| 295 | | eluzp1p1 11713 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺‘(𝑚 + 1)) − 1) ∈
(ℤ≥‘𝑀) → (((𝐺‘(𝑚 + 1)) − 1) + 1) ∈
(ℤ≥‘(𝑀 + 1))) |
| 296 | 294, 295 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (((𝐺‘(𝑚 + 1)) − 1) + 1) ∈
(ℤ≥‘(𝑀 + 1))) |
| 297 | 292, 296 | eqeltrrd 2702 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (𝐺‘(𝑚 + 1)) ∈
(ℤ≥‘(𝑀 + 1))) |
| 298 | | seqm1 12818 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℤ ∧ (𝐺‘(𝑚 + 1)) ∈
(ℤ≥‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = ((seq𝑀( + , 𝐹)‘((𝐺‘(𝑚 + 1)) − 1)) + (𝐹‘(𝐺‘(𝑚 + 1))))) |
| 299 | 288, 297,
298 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = ((seq𝑀( + , 𝐹)‘((𝐺‘(𝑚 + 1)) − 1)) + (𝐹‘(𝐺‘(𝑚 + 1))))) |
| 300 | 278, 287,
299 | 3eqtr4rd 2667 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) + (𝐻‘(𝑚 + 1)))) |
| 301 | | seqp1 12816 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈
(ℤ≥‘1) → (seq1( + , 𝐻)‘(𝑚 + 1)) = ((seq1( + , 𝐻)‘𝑚) + (𝐻‘(𝑚 + 1)))) |
| 302 | 154, 301 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → (seq1( + , 𝐻)‘(𝑚 + 1)) = ((seq1( + , 𝐻)‘𝑚) + (𝐻‘(𝑚 + 1)))) |
| 303 | 300, 302 | eqeq12d 2637 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → ((seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1)) ↔ ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) + (𝐻‘(𝑚 + 1))) = ((seq1( + , 𝐻)‘𝑚) + (𝐻‘(𝑚 + 1))))) |
| 304 | 165, 303 | syl5ibr 236 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑚 + 1) ∈ (1...(#‘𝐴))) → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1)))) |
| 305 | 304 | ex 450 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑚 + 1) ∈ (1...(#‘𝐴)) → ((seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1))))) |
| 306 | 305 | a2d 29 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (((𝑚 + 1) ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚)) → ((𝑚 + 1) ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1))))) |
| 307 | 164, 306 | syld 47 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑚 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚)) → ((𝑚 + 1) ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1))))) |
| 308 | 307 | expcom 451 |
. . . . 5
⊢ (𝑚 ∈ ℕ → (𝜑 → ((𝑚 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚)) → ((𝑚 + 1) ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1)))))) |
| 309 | 308 | a2d 29 |
. . . 4
⊢ (𝑚 ∈ ℕ → ((𝜑 → (𝑚 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑚)) = (seq1( + , 𝐻)‘𝑚))) → (𝜑 → ((𝑚 + 1) ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘(𝑚 + 1))) = (seq1( + , 𝐻)‘(𝑚 + 1)))))) |
| 310 | 10, 17, 24, 31, 151, 309 | nnind 11038 |
. . 3
⊢ (𝑁 ∈ ℕ → (𝜑 → (𝑁 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑁)) = (seq1( + , 𝐻)‘𝑁)))) |
| 311 | 3, 310 | mpcom 38 |
. 2
⊢ (𝜑 → (𝑁 ∈ (1...(#‘𝐴)) → (seq𝑀( + , 𝐹)‘(𝐺‘𝑁)) = (seq1( + , 𝐻)‘𝑁))) |
| 312 | 1, 311 | mpd 15 |
1
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺‘𝑁)) = (seq1( + , 𝐻)‘𝑁)) |