| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lerel | Structured version Visualization version GIF version | ||
| Description: 'Less or equal to' is a relation. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| lerel | ⊢ Rel ≤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lerelxr 10101 | . 2 ⊢ ≤ ⊆ (ℝ* × ℝ*) | |
| 2 | relxp 5227 | . 2 ⊢ Rel (ℝ* × ℝ*) | |
| 3 | relss 5206 | . 2 ⊢ ( ≤ ⊆ (ℝ* × ℝ*) → (Rel (ℝ* × ℝ*) → Rel ≤ )) | |
| 4 | 1, 2, 3 | mp2 9 | 1 ⊢ Rel ≤ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3574 × cxp 5112 Rel wrel 5119 ℝ*cxr 10073 ≤ cle 10075 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-opab 4713 df-xp 5120 df-rel 5121 df-le 10080 |
| This theorem is referenced by: dfle2 11980 dflt2 11981 ledm 17224 lern 17225 lefld 17226 letsr 17227 dvle 23770 gtiso 29478 |
| Copyright terms: Public domain | W3C validator |