Proof of Theorem dvle
| Step | Hyp | Ref
| Expression |
| 1 | | dvle.y |
. . 3
⊢ (𝜑 → 𝑌 ∈ (𝑀[,]𝑁)) |
| 2 | | dvle.a |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ)) |
| 3 | | cncff 22696 |
. . . . 5
⊢ ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ) |
| 4 | 2, 3 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ) |
| 5 | | eqid 2622 |
. . . . 5
⊢ (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) = (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) |
| 6 | 5 | fmpt 6381 |
. . . 4
⊢
(∀𝑥 ∈
(𝑀[,]𝑁)𝐴 ∈ ℝ ↔ (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ) |
| 7 | 4, 6 | sylibr 224 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ) |
| 8 | | dvle.r |
. . . . 5
⊢ (𝑥 = 𝑌 → 𝐴 = 𝑅) |
| 9 | 8 | eleq1d 2686 |
. . . 4
⊢ (𝑥 = 𝑌 → (𝐴 ∈ ℝ ↔ 𝑅 ∈ ℝ)) |
| 10 | 9 | rspcv 3305 |
. . 3
⊢ (𝑌 ∈ (𝑀[,]𝑁) → (∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ → 𝑅 ∈ ℝ)) |
| 11 | 1, 7, 10 | sylc 65 |
. 2
⊢ (𝜑 → 𝑅 ∈ ℝ) |
| 12 | | dvle.c |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶) ∈ ((𝑀[,]𝑁)–cn→ℝ)) |
| 13 | | cncff 22696 |
. . . . . 6
⊢ ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶) ∈ ((𝑀[,]𝑁)–cn→ℝ) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶):(𝑀[,]𝑁)⟶ℝ) |
| 14 | 12, 13 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶):(𝑀[,]𝑁)⟶ℝ) |
| 15 | | eqid 2622 |
. . . . . 6
⊢ (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶) = (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶) |
| 16 | 15 | fmpt 6381 |
. . . . 5
⊢
(∀𝑥 ∈
(𝑀[,]𝑁)𝐶 ∈ ℝ ↔ (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶):(𝑀[,]𝑁)⟶ℝ) |
| 17 | 14, 16 | sylibr 224 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ (𝑀[,]𝑁)𝐶 ∈ ℝ) |
| 18 | | dvle.s |
. . . . . 6
⊢ (𝑥 = 𝑌 → 𝐶 = 𝑆) |
| 19 | 18 | eleq1d 2686 |
. . . . 5
⊢ (𝑥 = 𝑌 → (𝐶 ∈ ℝ ↔ 𝑆 ∈ ℝ)) |
| 20 | 19 | rspcv 3305 |
. . . 4
⊢ (𝑌 ∈ (𝑀[,]𝑁) → (∀𝑥 ∈ (𝑀[,]𝑁)𝐶 ∈ ℝ → 𝑆 ∈ ℝ)) |
| 21 | 1, 17, 20 | sylc 65 |
. . 3
⊢ (𝜑 → 𝑆 ∈ ℝ) |
| 22 | | dvle.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ (𝑀[,]𝑁)) |
| 23 | | dvle.q |
. . . . . 6
⊢ (𝑥 = 𝑋 → 𝐶 = 𝑄) |
| 24 | 23 | eleq1d 2686 |
. . . . 5
⊢ (𝑥 = 𝑋 → (𝐶 ∈ ℝ ↔ 𝑄 ∈ ℝ)) |
| 25 | 24 | rspcv 3305 |
. . . 4
⊢ (𝑋 ∈ (𝑀[,]𝑁) → (∀𝑥 ∈ (𝑀[,]𝑁)𝐶 ∈ ℝ → 𝑄 ∈ ℝ)) |
| 26 | 22, 17, 25 | sylc 65 |
. . 3
⊢ (𝜑 → 𝑄 ∈ ℝ) |
| 27 | 21, 26 | resubcld 10458 |
. 2
⊢ (𝜑 → (𝑆 − 𝑄) ∈ ℝ) |
| 28 | | dvle.p |
. . . . 5
⊢ (𝑥 = 𝑋 → 𝐴 = 𝑃) |
| 29 | 28 | eleq1d 2686 |
. . . 4
⊢ (𝑥 = 𝑋 → (𝐴 ∈ ℝ ↔ 𝑃 ∈ ℝ)) |
| 30 | 29 | rspcv 3305 |
. . 3
⊢ (𝑋 ∈ (𝑀[,]𝑁) → (∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ → 𝑃 ∈ ℝ)) |
| 31 | 22, 7, 30 | sylc 65 |
. 2
⊢ (𝜑 → 𝑃 ∈ ℝ) |
| 32 | 11 | recnd 10068 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ ℂ) |
| 33 | 26 | recnd 10068 |
. . . . . 6
⊢ (𝜑 → 𝑄 ∈ ℂ) |
| 34 | 21 | recnd 10068 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ ℂ) |
| 35 | 33, 34 | subcld 10392 |
. . . . 5
⊢ (𝜑 → (𝑄 − 𝑆) ∈ ℂ) |
| 36 | 32, 35 | addcomd 10238 |
. . . 4
⊢ (𝜑 → (𝑅 + (𝑄 − 𝑆)) = ((𝑄 − 𝑆) + 𝑅)) |
| 37 | 32, 34, 33 | subsub2d 10421 |
. . . 4
⊢ (𝜑 → (𝑅 − (𝑆 − 𝑄)) = (𝑅 + (𝑄 − 𝑆))) |
| 38 | 33, 34, 32 | subsubd 10420 |
. . . 4
⊢ (𝜑 → (𝑄 − (𝑆 − 𝑅)) = ((𝑄 − 𝑆) + 𝑅)) |
| 39 | 36, 37, 38 | 3eqtr4d 2666 |
. . 3
⊢ (𝜑 → (𝑅 − (𝑆 − 𝑄)) = (𝑄 − (𝑆 − 𝑅))) |
| 40 | 21, 11 | resubcld 10458 |
. . . 4
⊢ (𝜑 → (𝑆 − 𝑅) ∈ ℝ) |
| 41 | | dvle.m |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 42 | | dvle.n |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 43 | | eqid 2622 |
. . . . . . 7
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 44 | 43 | subcn 22669 |
. . . . . . 7
⊢ −
∈ (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) |
| 45 | | ax-resscn 9993 |
. . . . . . 7
⊢ ℝ
⊆ ℂ |
| 46 | | resubcl 10345 |
. . . . . . 7
⊢ ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐶 − 𝐴) ∈ ℝ) |
| 47 | 43, 44, 12, 2, 45, 46 | cncfmpt2ss 22718 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶 − 𝐴)) ∈ ((𝑀[,]𝑁)–cn→ℝ)) |
| 48 | | ioossicc 12259 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀(,)𝑁) ⊆ (𝑀[,]𝑁) |
| 49 | 48 | sseli 3599 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (𝑀(,)𝑁) → 𝑥 ∈ (𝑀[,]𝑁)) |
| 50 | 17 | r19.21bi 2932 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) → 𝐶 ∈ ℝ) |
| 51 | 49, 50 | sylan2 491 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐶 ∈ ℝ) |
| 52 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶) |
| 53 | 51, 52 | fmptd 6385 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶):(𝑀(,)𝑁)⟶ℝ) |
| 54 | | ioossre 12235 |
. . . . . . . . . . . . . 14
⊢ (𝑀(,)𝑁) ⊆ ℝ |
| 55 | | dvfre 23714 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶):(𝑀(,)𝑁)⟶ℝ ∧ (𝑀(,)𝑁) ⊆ ℝ) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶))⟶ℝ) |
| 56 | 53, 54, 55 | sylancl 694 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶))⟶ℝ) |
| 57 | | dvle.d |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷)) |
| 58 | 57 | dmeqd 5326 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)) = dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷)) |
| 59 | | dvle.f |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐵 ≤ 𝐷) |
| 60 | | lerel 10102 |
. . . . . . . . . . . . . . . . . . 19
⊢ Rel
≤ |
| 61 | 60 | brrelex2i 5159 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 ≤ 𝐷 → 𝐷 ∈ V) |
| 62 | 59, 61 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐷 ∈ V) |
| 63 | 62 | ralrimiva 2966 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑥 ∈ (𝑀(,)𝑁)𝐷 ∈ V) |
| 64 | | dmmptg 5632 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑥 ∈
(𝑀(,)𝑁)𝐷 ∈ V → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷) = (𝑀(,)𝑁)) |
| 65 | 63, 64 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷) = (𝑀(,)𝑁)) |
| 66 | 58, 65 | eqtrd 2656 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)) = (𝑀(,)𝑁)) |
| 67 | 57, 66 | feq12d 6033 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶))⟶ℝ ↔ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷):(𝑀(,)𝑁)⟶ℝ)) |
| 68 | 56, 67 | mpbid 222 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷):(𝑀(,)𝑁)⟶ℝ) |
| 69 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷) |
| 70 | 69 | fmpt 6381 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
(𝑀(,)𝑁)𝐷 ∈ ℝ ↔ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷):(𝑀(,)𝑁)⟶ℝ) |
| 71 | 68, 70 | sylibr 224 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ (𝑀(,)𝑁)𝐷 ∈ ℝ) |
| 72 | 71 | r19.21bi 2932 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐷 ∈ ℝ) |
| 73 | 7 | r19.21bi 2932 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) → 𝐴 ∈ ℝ) |
| 74 | 49, 73 | sylan2 491 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐴 ∈ ℝ) |
| 75 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴) |
| 76 | 74, 75 | fmptd 6385 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴):(𝑀(,)𝑁)⟶ℝ) |
| 77 | | dvfre 23714 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴):(𝑀(,)𝑁)⟶ℝ ∧ (𝑀(,)𝑁) ⊆ ℝ) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ) |
| 78 | 76, 54, 77 | sylancl 694 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ) |
| 79 | | dvle.b |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵)) |
| 80 | 79 | dmeqd 5326 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵)) |
| 81 | 60 | brrelexi 5158 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 ≤ 𝐷 → 𝐵 ∈ V) |
| 82 | 59, 81 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐵 ∈ V) |
| 83 | 82 | ralrimiva 2966 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑥 ∈ (𝑀(,)𝑁)𝐵 ∈ V) |
| 84 | | dmmptg 5632 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑥 ∈
(𝑀(,)𝑁)𝐵 ∈ V → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑀(,)𝑁)) |
| 85 | 83, 84 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑀(,)𝑁)) |
| 86 | 80, 85 | eqtrd 2656 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑀(,)𝑁)) |
| 87 | 79, 86 | feq12d 6033 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ ↔ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵):(𝑀(,)𝑁)⟶ℝ)) |
| 88 | 78, 87 | mpbid 222 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵):(𝑀(,)𝑁)⟶ℝ) |
| 89 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) |
| 90 | 89 | fmpt 6381 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
(𝑀(,)𝑁)𝐵 ∈ ℝ ↔ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵):(𝑀(,)𝑁)⟶ℝ) |
| 91 | 88, 90 | sylibr 224 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ (𝑀(,)𝑁)𝐵 ∈ ℝ) |
| 92 | 91 | r19.21bi 2932 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐵 ∈ ℝ) |
| 93 | 72, 92 | resubcld 10458 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀(,)𝑁)) → (𝐷 − 𝐵) ∈ ℝ) |
| 94 | 72, 92 | subge0d 10617 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀(,)𝑁)) → (0 ≤ (𝐷 − 𝐵) ↔ 𝐵 ≤ 𝐷)) |
| 95 | 59, 94 | mpbird 247 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 0 ≤ (𝐷 − 𝐵)) |
| 96 | | elrege0 12278 |
. . . . . . . . 9
⊢ ((𝐷 − 𝐵) ∈ (0[,)+∞) ↔ ((𝐷 − 𝐵) ∈ ℝ ∧ 0 ≤ (𝐷 − 𝐵))) |
| 97 | 93, 95, 96 | sylanbrc 698 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀(,)𝑁)) → (𝐷 − 𝐵) ∈ (0[,)+∞)) |
| 98 | | eqid 2622 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝐷 − 𝐵)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝐷 − 𝐵)) |
| 99 | 97, 98 | fmptd 6385 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝐷 − 𝐵)):(𝑀(,)𝑁)⟶(0[,)+∞)) |
| 100 | 45 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℝ ⊆
ℂ) |
| 101 | | iccssre 12255 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀[,]𝑁) ⊆ ℝ) |
| 102 | 41, 42, 101 | syl2anc 693 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀[,]𝑁) ⊆ ℝ) |
| 103 | 50, 73 | resubcld 10458 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) → (𝐶 − 𝐴) ∈ ℝ) |
| 104 | 103 | recnd 10068 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) → (𝐶 − 𝐴) ∈ ℂ) |
| 105 | 43 | tgioo2 22606 |
. . . . . . . . . 10
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
| 106 | | iccntr 22624 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) →
((int‘(topGen‘ran (,)))‘(𝑀[,]𝑁)) = (𝑀(,)𝑁)) |
| 107 | 41, 42, 106 | syl2anc 693 |
. . . . . . . . . 10
⊢ (𝜑 →
((int‘(topGen‘ran (,)))‘(𝑀[,]𝑁)) = (𝑀(,)𝑁)) |
| 108 | 100, 102,
104, 105, 43, 107 | dvmptntr 23734 |
. . . . . . . . 9
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶 − 𝐴))) = (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝐶 − 𝐴)))) |
| 109 | | reelprrecn 10028 |
. . . . . . . . . . 11
⊢ ℝ
∈ {ℝ, ℂ} |
| 110 | 109 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ℝ ∈ {ℝ,
ℂ}) |
| 111 | 50 | recnd 10068 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) → 𝐶 ∈ ℂ) |
| 112 | 49, 111 | sylan2 491 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐶 ∈ ℂ) |
| 113 | 73 | recnd 10068 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀[,]𝑁)) → 𝐴 ∈ ℂ) |
| 114 | 49, 113 | sylan2 491 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐴 ∈ ℂ) |
| 115 | 110, 112,
62, 57, 114, 82, 79 | dvmptsub 23730 |
. . . . . . . . 9
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝐶 − 𝐴))) = (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝐷 − 𝐵))) |
| 116 | 108, 115 | eqtrd 2656 |
. . . . . . . 8
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶 − 𝐴))) = (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝐷 − 𝐵))) |
| 117 | 116 | feq1d 6030 |
. . . . . . 7
⊢ (𝜑 → ((ℝ D (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶 − 𝐴))):(𝑀(,)𝑁)⟶(0[,)+∞) ↔ (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝐷 − 𝐵)):(𝑀(,)𝑁)⟶(0[,)+∞))) |
| 118 | 99, 117 | mpbird 247 |
. . . . . 6
⊢ (𝜑 → (ℝ D (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶 − 𝐴))):(𝑀(,)𝑁)⟶(0[,)+∞)) |
| 119 | | dvle.l |
. . . . . 6
⊢ (𝜑 → 𝑋 ≤ 𝑌) |
| 120 | 41, 42, 47, 118, 22, 1, 119 | dvge0 23769 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶 − 𝐴))‘𝑋) ≤ ((𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶 − 𝐴))‘𝑌)) |
| 121 | 23, 28 | oveq12d 6668 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (𝐶 − 𝐴) = (𝑄 − 𝑃)) |
| 122 | | eqid 2622 |
. . . . . . 7
⊢ (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶 − 𝐴)) = (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶 − 𝐴)) |
| 123 | | ovex 6678 |
. . . . . . 7
⊢ (𝐶 − 𝐴) ∈ V |
| 124 | 121, 122,
123 | fvmpt3i 6287 |
. . . . . 6
⊢ (𝑋 ∈ (𝑀[,]𝑁) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶 − 𝐴))‘𝑋) = (𝑄 − 𝑃)) |
| 125 | 22, 124 | syl 17 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶 − 𝐴))‘𝑋) = (𝑄 − 𝑃)) |
| 126 | 18, 8 | oveq12d 6668 |
. . . . . . 7
⊢ (𝑥 = 𝑌 → (𝐶 − 𝐴) = (𝑆 − 𝑅)) |
| 127 | 126, 122,
123 | fvmpt3i 6287 |
. . . . . 6
⊢ (𝑌 ∈ (𝑀[,]𝑁) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶 − 𝐴))‘𝑌) = (𝑆 − 𝑅)) |
| 128 | 1, 127 | syl 17 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶 − 𝐴))‘𝑌) = (𝑆 − 𝑅)) |
| 129 | 120, 125,
128 | 3brtr3d 4684 |
. . . 4
⊢ (𝜑 → (𝑄 − 𝑃) ≤ (𝑆 − 𝑅)) |
| 130 | 26, 31, 40, 129 | subled 10630 |
. . 3
⊢ (𝜑 → (𝑄 − (𝑆 − 𝑅)) ≤ 𝑃) |
| 131 | 39, 130 | eqbrtrd 4675 |
. 2
⊢ (𝜑 → (𝑅 − (𝑆 − 𝑄)) ≤ 𝑃) |
| 132 | 11, 27, 31, 131 | subled 10630 |
1
⊢ (𝜑 → (𝑅 − 𝑃) ≤ (𝑆 − 𝑄)) |