MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvle Structured version   Visualization version   GIF version

Theorem dvle 23770
Description: If 𝐴(𝑥), 𝐶(𝑥) are differentiable functions and 𝐴‘ ≤ 𝐶, then for 𝑥𝑦, 𝐴(𝑦) − 𝐴(𝑥) ≤ 𝐶(𝑦) − 𝐶(𝑥). (Contributed by Mario Carneiro, 16-May-2016.)
Hypotheses
Ref Expression
dvle.m (𝜑𝑀 ∈ ℝ)
dvle.n (𝜑𝑁 ∈ ℝ)
dvle.a (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ))
dvle.b (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
dvle.c (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶) ∈ ((𝑀[,]𝑁)–cn→ℝ))
dvle.d (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷))
dvle.f ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝐷)
dvle.x (𝜑𝑋 ∈ (𝑀[,]𝑁))
dvle.y (𝜑𝑌 ∈ (𝑀[,]𝑁))
dvle.l (𝜑𝑋𝑌)
dvle.p (𝑥 = 𝑋𝐴 = 𝑃)
dvle.q (𝑥 = 𝑋𝐶 = 𝑄)
dvle.r (𝑥 = 𝑌𝐴 = 𝑅)
dvle.s (𝑥 = 𝑌𝐶 = 𝑆)
Assertion
Ref Expression
dvle (𝜑 → (𝑅𝑃) ≤ (𝑆𝑄))
Distinct variable groups:   𝑥,𝑀   𝑥,𝑁   𝑥,𝑃   𝑥,𝑄   𝑥,𝑅   𝑥,𝑆   𝑥,𝑋   𝜑,𝑥   𝑥,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem dvle
StepHypRef Expression
1 dvle.y . . 3 (𝜑𝑌 ∈ (𝑀[,]𝑁))
2 dvle.a . . . . 5 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ))
3 cncff 22696 . . . . 5 ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℝ) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ)
42, 3syl 17 . . . 4 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ)
5 eqid 2622 . . . . 5 (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) = (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴)
65fmpt 6381 . . . 4 (∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ ↔ (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℝ)
74, 6sylibr 224 . . 3 (𝜑 → ∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ)
8 dvle.r . . . . 5 (𝑥 = 𝑌𝐴 = 𝑅)
98eleq1d 2686 . . . 4 (𝑥 = 𝑌 → (𝐴 ∈ ℝ ↔ 𝑅 ∈ ℝ))
109rspcv 3305 . . 3 (𝑌 ∈ (𝑀[,]𝑁) → (∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ → 𝑅 ∈ ℝ))
111, 7, 10sylc 65 . 2 (𝜑𝑅 ∈ ℝ)
12 dvle.c . . . . . 6 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶) ∈ ((𝑀[,]𝑁)–cn→ℝ))
13 cncff 22696 . . . . . 6 ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶) ∈ ((𝑀[,]𝑁)–cn→ℝ) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶):(𝑀[,]𝑁)⟶ℝ)
1412, 13syl 17 . . . . 5 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶):(𝑀[,]𝑁)⟶ℝ)
15 eqid 2622 . . . . . 6 (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶) = (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶)
1615fmpt 6381 . . . . 5 (∀𝑥 ∈ (𝑀[,]𝑁)𝐶 ∈ ℝ ↔ (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐶):(𝑀[,]𝑁)⟶ℝ)
1714, 16sylibr 224 . . . 4 (𝜑 → ∀𝑥 ∈ (𝑀[,]𝑁)𝐶 ∈ ℝ)
18 dvle.s . . . . . 6 (𝑥 = 𝑌𝐶 = 𝑆)
1918eleq1d 2686 . . . . 5 (𝑥 = 𝑌 → (𝐶 ∈ ℝ ↔ 𝑆 ∈ ℝ))
2019rspcv 3305 . . . 4 (𝑌 ∈ (𝑀[,]𝑁) → (∀𝑥 ∈ (𝑀[,]𝑁)𝐶 ∈ ℝ → 𝑆 ∈ ℝ))
211, 17, 20sylc 65 . . 3 (𝜑𝑆 ∈ ℝ)
22 dvle.x . . . 4 (𝜑𝑋 ∈ (𝑀[,]𝑁))
23 dvle.q . . . . . 6 (𝑥 = 𝑋𝐶 = 𝑄)
2423eleq1d 2686 . . . . 5 (𝑥 = 𝑋 → (𝐶 ∈ ℝ ↔ 𝑄 ∈ ℝ))
2524rspcv 3305 . . . 4 (𝑋 ∈ (𝑀[,]𝑁) → (∀𝑥 ∈ (𝑀[,]𝑁)𝐶 ∈ ℝ → 𝑄 ∈ ℝ))
2622, 17, 25sylc 65 . . 3 (𝜑𝑄 ∈ ℝ)
2721, 26resubcld 10458 . 2 (𝜑 → (𝑆𝑄) ∈ ℝ)
28 dvle.p . . . . 5 (𝑥 = 𝑋𝐴 = 𝑃)
2928eleq1d 2686 . . . 4 (𝑥 = 𝑋 → (𝐴 ∈ ℝ ↔ 𝑃 ∈ ℝ))
3029rspcv 3305 . . 3 (𝑋 ∈ (𝑀[,]𝑁) → (∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℝ → 𝑃 ∈ ℝ))
3122, 7, 30sylc 65 . 2 (𝜑𝑃 ∈ ℝ)
3211recnd 10068 . . . . 5 (𝜑𝑅 ∈ ℂ)
3326recnd 10068 . . . . . 6 (𝜑𝑄 ∈ ℂ)
3421recnd 10068 . . . . . 6 (𝜑𝑆 ∈ ℂ)
3533, 34subcld 10392 . . . . 5 (𝜑 → (𝑄𝑆) ∈ ℂ)
3632, 35addcomd 10238 . . . 4 (𝜑 → (𝑅 + (𝑄𝑆)) = ((𝑄𝑆) + 𝑅))
3732, 34, 33subsub2d 10421 . . . 4 (𝜑 → (𝑅 − (𝑆𝑄)) = (𝑅 + (𝑄𝑆)))
3833, 34, 32subsubd 10420 . . . 4 (𝜑 → (𝑄 − (𝑆𝑅)) = ((𝑄𝑆) + 𝑅))
3936, 37, 383eqtr4d 2666 . . 3 (𝜑 → (𝑅 − (𝑆𝑄)) = (𝑄 − (𝑆𝑅)))
4021, 11resubcld 10458 . . . 4 (𝜑 → (𝑆𝑅) ∈ ℝ)
41 dvle.m . . . . . 6 (𝜑𝑀 ∈ ℝ)
42 dvle.n . . . . . 6 (𝜑𝑁 ∈ ℝ)
43 eqid 2622 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4443subcn 22669 . . . . . . 7 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
45 ax-resscn 9993 . . . . . . 7 ℝ ⊆ ℂ
46 resubcl 10345 . . . . . . 7 ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐶𝐴) ∈ ℝ)
4743, 44, 12, 2, 45, 46cncfmpt2ss 22718 . . . . . 6 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴)) ∈ ((𝑀[,]𝑁)–cn→ℝ))
48 ioossicc 12259 . . . . . . . . . . . . . . . . 17 (𝑀(,)𝑁) ⊆ (𝑀[,]𝑁)
4948sseli 3599 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑀(,)𝑁) → 𝑥 ∈ (𝑀[,]𝑁))
5017r19.21bi 2932 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝐶 ∈ ℝ)
5149, 50sylan2 491 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐶 ∈ ℝ)
52 eqid 2622 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)
5351, 52fmptd 6385 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶):(𝑀(,)𝑁)⟶ℝ)
54 ioossre 12235 . . . . . . . . . . . . . 14 (𝑀(,)𝑁) ⊆ ℝ
55 dvfre 23714 . . . . . . . . . . . . . 14 (((𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶):(𝑀(,)𝑁)⟶ℝ ∧ (𝑀(,)𝑁) ⊆ ℝ) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶))⟶ℝ)
5653, 54, 55sylancl 694 . . . . . . . . . . . . 13 (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶))⟶ℝ)
57 dvle.d . . . . . . . . . . . . . 14 (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷))
5857dmeqd 5326 . . . . . . . . . . . . . . 15 (𝜑 → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)) = dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷))
59 dvle.f . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝐷)
60 lerel 10102 . . . . . . . . . . . . . . . . . . 19 Rel ≤
6160brrelex2i 5159 . . . . . . . . . . . . . . . . . 18 (𝐵𝐷𝐷 ∈ V)
6259, 61syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐷 ∈ V)
6362ralrimiva 2966 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥 ∈ (𝑀(,)𝑁)𝐷 ∈ V)
64 dmmptg 5632 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ (𝑀(,)𝑁)𝐷 ∈ V → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷) = (𝑀(,)𝑁))
6563, 64syl 17 . . . . . . . . . . . . . . 15 (𝜑 → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷) = (𝑀(,)𝑁))
6658, 65eqtrd 2656 . . . . . . . . . . . . . 14 (𝜑 → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)) = (𝑀(,)𝑁))
6757, 66feq12d 6033 . . . . . . . . . . . . 13 (𝜑 → ((ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐶))⟶ℝ ↔ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷):(𝑀(,)𝑁)⟶ℝ))
6856, 67mpbid 222 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷):(𝑀(,)𝑁)⟶ℝ)
69 eqid 2622 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷)
7069fmpt 6381 . . . . . . . . . . . 12 (∀𝑥 ∈ (𝑀(,)𝑁)𝐷 ∈ ℝ ↔ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐷):(𝑀(,)𝑁)⟶ℝ)
7168, 70sylibr 224 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ (𝑀(,)𝑁)𝐷 ∈ ℝ)
7271r19.21bi 2932 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐷 ∈ ℝ)
737r19.21bi 2932 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝐴 ∈ ℝ)
7449, 73sylan2 491 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐴 ∈ ℝ)
75 eqid 2622 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)
7674, 75fmptd 6385 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴):(𝑀(,)𝑁)⟶ℝ)
77 dvfre 23714 . . . . . . . . . . . . . 14 (((𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴):(𝑀(,)𝑁)⟶ℝ ∧ (𝑀(,)𝑁) ⊆ ℝ) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ)
7876, 54, 77sylancl 694 . . . . . . . . . . . . 13 (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ)
79 dvle.b . . . . . . . . . . . . . 14 (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
8079dmeqd 5326 . . . . . . . . . . . . . . 15 (𝜑 → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
8160brrelexi 5158 . . . . . . . . . . . . . . . . . 18 (𝐵𝐷𝐵 ∈ V)
8259, 81syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵 ∈ V)
8382ralrimiva 2966 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥 ∈ (𝑀(,)𝑁)𝐵 ∈ V)
84 dmmptg 5632 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ (𝑀(,)𝑁)𝐵 ∈ V → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑀(,)𝑁))
8583, 84syl 17 . . . . . . . . . . . . . . 15 (𝜑 → dom (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑀(,)𝑁))
8680, 85eqtrd 2656 . . . . . . . . . . . . . 14 (𝜑 → dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑀(,)𝑁))
8779, 86feq12d 6033 . . . . . . . . . . . . 13 (𝜑 → ((ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)):dom (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴))⟶ℝ ↔ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵):(𝑀(,)𝑁)⟶ℝ))
8878, 87mpbid 222 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵):(𝑀(,)𝑁)⟶ℝ)
89 eqid 2622 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵)
9089fmpt 6381 . . . . . . . . . . . 12 (∀𝑥 ∈ (𝑀(,)𝑁)𝐵 ∈ ℝ ↔ (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵):(𝑀(,)𝑁)⟶ℝ)
9188, 90sylibr 224 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ (𝑀(,)𝑁)𝐵 ∈ ℝ)
9291r19.21bi 2932 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵 ∈ ℝ)
9372, 92resubcld 10458 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → (𝐷𝐵) ∈ ℝ)
9472, 92subge0d 10617 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → (0 ≤ (𝐷𝐵) ↔ 𝐵𝐷))
9559, 94mpbird 247 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 0 ≤ (𝐷𝐵))
96 elrege0 12278 . . . . . . . . 9 ((𝐷𝐵) ∈ (0[,)+∞) ↔ ((𝐷𝐵) ∈ ℝ ∧ 0 ≤ (𝐷𝐵)))
9793, 95, 96sylanbrc 698 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → (𝐷𝐵) ∈ (0[,)+∞))
98 eqid 2622 . . . . . . . 8 (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝐷𝐵)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝐷𝐵))
9997, 98fmptd 6385 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝐷𝐵)):(𝑀(,)𝑁)⟶(0[,)+∞))
10045a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ⊆ ℂ)
101 iccssre 12255 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀[,]𝑁) ⊆ ℝ)
10241, 42, 101syl2anc 693 . . . . . . . . . 10 (𝜑 → (𝑀[,]𝑁) ⊆ ℝ)
10350, 73resubcld 10458 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝐶𝐴) ∈ ℝ)
104103recnd 10068 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝐶𝐴) ∈ ℂ)
10543tgioo2 22606 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
106 iccntr 22624 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑀[,]𝑁)) = (𝑀(,)𝑁))
10741, 42, 106syl2anc 693 . . . . . . . . . 10 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝑀[,]𝑁)) = (𝑀(,)𝑁))
108100, 102, 104, 105, 43, 107dvmptntr 23734 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))) = (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝐶𝐴))))
109 reelprrecn 10028 . . . . . . . . . . 11 ℝ ∈ {ℝ, ℂ}
110109a1i 11 . . . . . . . . . 10 (𝜑 → ℝ ∈ {ℝ, ℂ})
11150recnd 10068 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝐶 ∈ ℂ)
11249, 111sylan2 491 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐶 ∈ ℂ)
11373recnd 10068 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝐴 ∈ ℂ)
11449, 113sylan2 491 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐴 ∈ ℂ)
115110, 112, 62, 57, 114, 82, 79dvmptsub 23730 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝐶𝐴))) = (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝐷𝐵)))
116108, 115eqtrd 2656 . . . . . . . 8 (𝜑 → (ℝ D (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))) = (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝐷𝐵)))
117116feq1d 6030 . . . . . . 7 (𝜑 → ((ℝ D (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))):(𝑀(,)𝑁)⟶(0[,)+∞) ↔ (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝐷𝐵)):(𝑀(,)𝑁)⟶(0[,)+∞)))
11899, 117mpbird 247 . . . . . 6 (𝜑 → (ℝ D (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))):(𝑀(,)𝑁)⟶(0[,)+∞))
119 dvle.l . . . . . 6 (𝜑𝑋𝑌)
12041, 42, 47, 118, 22, 1, 119dvge0 23769 . . . . 5 (𝜑 → ((𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))‘𝑋) ≤ ((𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))‘𝑌))
12123, 28oveq12d 6668 . . . . . . 7 (𝑥 = 𝑋 → (𝐶𝐴) = (𝑄𝑃))
122 eqid 2622 . . . . . . 7 (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴)) = (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))
123 ovex 6678 . . . . . . 7 (𝐶𝐴) ∈ V
124121, 122, 123fvmpt3i 6287 . . . . . 6 (𝑋 ∈ (𝑀[,]𝑁) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))‘𝑋) = (𝑄𝑃))
12522, 124syl 17 . . . . 5 (𝜑 → ((𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))‘𝑋) = (𝑄𝑃))
12618, 8oveq12d 6668 . . . . . . 7 (𝑥 = 𝑌 → (𝐶𝐴) = (𝑆𝑅))
127126, 122, 123fvmpt3i 6287 . . . . . 6 (𝑌 ∈ (𝑀[,]𝑁) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))‘𝑌) = (𝑆𝑅))
1281, 127syl 17 . . . . 5 (𝜑 → ((𝑥 ∈ (𝑀[,]𝑁) ↦ (𝐶𝐴))‘𝑌) = (𝑆𝑅))
129120, 125, 1283brtr3d 4684 . . . 4 (𝜑 → (𝑄𝑃) ≤ (𝑆𝑅))
13026, 31, 40, 129subled 10630 . . 3 (𝜑 → (𝑄 − (𝑆𝑅)) ≤ 𝑃)
13139, 130eqbrtrd 4675 . 2 (𝜑 → (𝑅 − (𝑆𝑄)) ≤ 𝑃)
13211, 27, 31, 131subled 10630 1 (𝜑 → (𝑅𝑃) ≤ (𝑆𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  wss 3574  {cpr 4179   class class class wbr 4653  cmpt 4729  dom cdm 5114  ran crn 5115  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936   + caddc 9939  +∞cpnf 10071  cle 10075  cmin 10266  (,)cioo 12175  [,)cico 12177  [,]cicc 12178  TopOpenctopn 16082  topGenctg 16098  fldccnfld 19746  intcnt 20821  cnccncf 22679   D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  dvfsumle  23784  dvfsumlem2  23790  loglesqrt  24499
  Copyright terms: Public domain W3C validator