![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lfgredgge2 | Structured version Visualization version GIF version |
Description: An edge of a loop-free graph has at least two ends. (Contributed by AV, 23-Feb-2021.) |
Ref | Expression |
---|---|
lfuhgrnloopv.i | ⊢ 𝐼 = (iEdg‘𝐺) |
lfuhgrnloopv.a | ⊢ 𝐴 = dom 𝐼 |
lfuhgrnloopv.e | ⊢ 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} |
Ref | Expression |
---|---|
lfgredgge2 | ⊢ ((𝐼:𝐴⟶𝐸 ∧ 𝑋 ∈ 𝐴) → 2 ≤ (#‘(𝐼‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2622 | . . . . 5 ⊢ 𝐴 = 𝐴 | |
2 | lfuhgrnloopv.e | . . . . 5 ⊢ 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} | |
3 | 1, 2 | feq23i 6039 | . . . 4 ⊢ (𝐼:𝐴⟶𝐸 ↔ 𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)}) |
4 | 3 | biimpi 206 | . . 3 ⊢ (𝐼:𝐴⟶𝐸 → 𝐼:𝐴⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)}) |
5 | 4 | ffvelrnda 6359 | . 2 ⊢ ((𝐼:𝐴⟶𝐸 ∧ 𝑋 ∈ 𝐴) → (𝐼‘𝑋) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)}) |
6 | fveq2 6191 | . . . . 5 ⊢ (𝑦 = (𝐼‘𝑋) → (#‘𝑦) = (#‘(𝐼‘𝑋))) | |
7 | 6 | breq2d 4665 | . . . 4 ⊢ (𝑦 = (𝐼‘𝑋) → (2 ≤ (#‘𝑦) ↔ 2 ≤ (#‘(𝐼‘𝑋)))) |
8 | fveq2 6191 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (#‘𝑥) = (#‘𝑦)) | |
9 | 8 | breq2d 4665 | . . . . 5 ⊢ (𝑥 = 𝑦 → (2 ≤ (#‘𝑥) ↔ 2 ≤ (#‘𝑦))) |
10 | 9 | cbvrabv 3199 | . . . 4 ⊢ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} = {𝑦 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑦)} |
11 | 7, 10 | elrab2 3366 | . . 3 ⊢ ((𝐼‘𝑋) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} ↔ ((𝐼‘𝑋) ∈ 𝒫 𝑉 ∧ 2 ≤ (#‘(𝐼‘𝑋)))) |
12 | 11 | simprbi 480 | . 2 ⊢ ((𝐼‘𝑋) ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} → 2 ≤ (#‘(𝐼‘𝑋))) |
13 | 5, 12 | syl 17 | 1 ⊢ ((𝐼:𝐴⟶𝐸 ∧ 𝑋 ∈ 𝐴) → 2 ≤ (#‘(𝐼‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {crab 2916 𝒫 cpw 4158 class class class wbr 4653 dom cdm 5114 ⟶wf 5884 ‘cfv 5888 ≤ cle 10075 2c2 11070 #chash 13117 iEdgciedg 25875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 |
This theorem is referenced by: lfgrnloop 26020 |
Copyright terms: Public domain | W3C validator |