![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lfgrnloop | Structured version Visualization version GIF version |
Description: A loop-free graph has no loops. (Contributed by AV, 23-Feb-2021.) |
Ref | Expression |
---|---|
lfuhgrnloopv.i | ⊢ 𝐼 = (iEdg‘𝐺) |
lfuhgrnloopv.a | ⊢ 𝐴 = dom 𝐼 |
lfuhgrnloopv.e | ⊢ 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} |
Ref | Expression |
---|---|
lfgrnloop | ⊢ (𝐼:𝐴⟶𝐸 → {𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2764 | . . . 4 ⊢ Ⅎ𝑥𝐼 | |
2 | nfcv 2764 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | lfuhgrnloopv.e | . . . . 5 ⊢ 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} | |
4 | nfrab1 3122 | . . . . 5 ⊢ Ⅎ𝑥{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (#‘𝑥)} | |
5 | 3, 4 | nfcxfr 2762 | . . . 4 ⊢ Ⅎ𝑥𝐸 |
6 | 1, 2, 5 | nff 6041 | . . 3 ⊢ Ⅎ𝑥 𝐼:𝐴⟶𝐸 |
7 | hashsn01 13204 | . . . . . . 7 ⊢ ((#‘{𝑈}) = 0 ∨ (#‘{𝑈}) = 1) | |
8 | 2pos 11112 | . . . . . . . . . 10 ⊢ 0 < 2 | |
9 | 0re 10040 | . . . . . . . . . . 11 ⊢ 0 ∈ ℝ | |
10 | 2re 11090 | . . . . . . . . . . 11 ⊢ 2 ∈ ℝ | |
11 | 9, 10 | ltnlei 10158 | . . . . . . . . . 10 ⊢ (0 < 2 ↔ ¬ 2 ≤ 0) |
12 | 8, 11 | mpbi 220 | . . . . . . . . 9 ⊢ ¬ 2 ≤ 0 |
13 | breq2 4657 | . . . . . . . . 9 ⊢ ((#‘{𝑈}) = 0 → (2 ≤ (#‘{𝑈}) ↔ 2 ≤ 0)) | |
14 | 12, 13 | mtbiri 317 | . . . . . . . 8 ⊢ ((#‘{𝑈}) = 0 → ¬ 2 ≤ (#‘{𝑈})) |
15 | 1lt2 11194 | . . . . . . . . . 10 ⊢ 1 < 2 | |
16 | 1re 10039 | . . . . . . . . . . 11 ⊢ 1 ∈ ℝ | |
17 | 16, 10 | ltnlei 10158 | . . . . . . . . . 10 ⊢ (1 < 2 ↔ ¬ 2 ≤ 1) |
18 | 15, 17 | mpbi 220 | . . . . . . . . 9 ⊢ ¬ 2 ≤ 1 |
19 | breq2 4657 | . . . . . . . . 9 ⊢ ((#‘{𝑈}) = 1 → (2 ≤ (#‘{𝑈}) ↔ 2 ≤ 1)) | |
20 | 18, 19 | mtbiri 317 | . . . . . . . 8 ⊢ ((#‘{𝑈}) = 1 → ¬ 2 ≤ (#‘{𝑈})) |
21 | 14, 20 | jaoi 394 | . . . . . . 7 ⊢ (((#‘{𝑈}) = 0 ∨ (#‘{𝑈}) = 1) → ¬ 2 ≤ (#‘{𝑈})) |
22 | 7, 21 | ax-mp 5 | . . . . . 6 ⊢ ¬ 2 ≤ (#‘{𝑈}) |
23 | fveq2 6191 | . . . . . . 7 ⊢ ((𝐼‘𝑥) = {𝑈} → (#‘(𝐼‘𝑥)) = (#‘{𝑈})) | |
24 | 23 | breq2d 4665 | . . . . . 6 ⊢ ((𝐼‘𝑥) = {𝑈} → (2 ≤ (#‘(𝐼‘𝑥)) ↔ 2 ≤ (#‘{𝑈}))) |
25 | 22, 24 | mtbiri 317 | . . . . 5 ⊢ ((𝐼‘𝑥) = {𝑈} → ¬ 2 ≤ (#‘(𝐼‘𝑥))) |
26 | lfuhgrnloopv.i | . . . . . 6 ⊢ 𝐼 = (iEdg‘𝐺) | |
27 | lfuhgrnloopv.a | . . . . . 6 ⊢ 𝐴 = dom 𝐼 | |
28 | 26, 27, 3 | lfgredgge2 26019 | . . . . 5 ⊢ ((𝐼:𝐴⟶𝐸 ∧ 𝑥 ∈ 𝐴) → 2 ≤ (#‘(𝐼‘𝑥))) |
29 | 25, 28 | nsyl3 133 | . . . 4 ⊢ ((𝐼:𝐴⟶𝐸 ∧ 𝑥 ∈ 𝐴) → ¬ (𝐼‘𝑥) = {𝑈}) |
30 | 29 | ex 450 | . . 3 ⊢ (𝐼:𝐴⟶𝐸 → (𝑥 ∈ 𝐴 → ¬ (𝐼‘𝑥) = {𝑈})) |
31 | 6, 30 | ralrimi 2957 | . 2 ⊢ (𝐼:𝐴⟶𝐸 → ∀𝑥 ∈ 𝐴 ¬ (𝐼‘𝑥) = {𝑈}) |
32 | rabeq0 3957 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ (𝐼‘𝑥) = {𝑈}) | |
33 | 31, 32 | sylibr 224 | 1 ⊢ (𝐼:𝐴⟶𝐸 → {𝑥 ∈ 𝐴 ∣ (𝐼‘𝑥) = {𝑈}} = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 383 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 {crab 2916 ∅c0 3915 𝒫 cpw 4158 {csn 4177 class class class wbr 4653 dom cdm 5114 ⟶wf 5884 ‘cfv 5888 0cc0 9936 1c1 9937 < clt 10074 ≤ cle 10075 2c2 11070 #chash 13117 iEdgciedg 25875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-hash 13118 |
This theorem is referenced by: vtxdlfgrval 26381 |
Copyright terms: Public domain | W3C validator |