MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lnoadd Structured version   Visualization version   GIF version

Theorem lnoadd 27613
Description: Addition property of a linear operator. (Contributed by NM, 7-Dec-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnoadd.1 𝑋 = (BaseSet‘𝑈)
lnoadd.5 𝐺 = ( +𝑣𝑈)
lnoadd.6 𝐻 = ( +𝑣𝑊)
lnoadd.7 𝐿 = (𝑈 LnOp 𝑊)
Assertion
Ref Expression
lnoadd (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇‘(𝐴𝐺𝐵)) = ((𝑇𝐴)𝐻(𝑇𝐵)))

Proof of Theorem lnoadd
StepHypRef Expression
1 ax-1cn 9994 . . 3 1 ∈ ℂ
2 lnoadd.1 . . . 4 𝑋 = (BaseSet‘𝑈)
3 eqid 2622 . . . 4 (BaseSet‘𝑊) = (BaseSet‘𝑊)
4 lnoadd.5 . . . 4 𝐺 = ( +𝑣𝑈)
5 lnoadd.6 . . . 4 𝐻 = ( +𝑣𝑊)
6 eqid 2622 . . . 4 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
7 eqid 2622 . . . 4 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
8 lnoadd.7 . . . 4 𝐿 = (𝑈 LnOp 𝑊)
92, 3, 4, 5, 6, 7, 8lnolin 27609 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (1 ∈ ℂ ∧ 𝐴𝑋𝐵𝑋)) → (𝑇‘((1( ·𝑠OLD𝑈)𝐴)𝐺𝐵)) = ((1( ·𝑠OLD𝑊)(𝑇𝐴))𝐻(𝑇𝐵)))
101, 9mp3anr1 1421 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇‘((1( ·𝑠OLD𝑈)𝐴)𝐺𝐵)) = ((1( ·𝑠OLD𝑊)(𝑇𝐴))𝐻(𝑇𝐵)))
11 simp1 1061 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑈 ∈ NrmCVec)
12 simpl 473 . . . . 5 ((𝐴𝑋𝐵𝑋) → 𝐴𝑋)
132, 6nvsid 27482 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (1( ·𝑠OLD𝑈)𝐴) = 𝐴)
1411, 12, 13syl2an 494 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (1( ·𝑠OLD𝑈)𝐴) = 𝐴)
1514oveq1d 6665 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → ((1( ·𝑠OLD𝑈)𝐴)𝐺𝐵) = (𝐴𝐺𝐵))
1615fveq2d 6195 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇‘((1( ·𝑠OLD𝑈)𝐴)𝐺𝐵)) = (𝑇‘(𝐴𝐺𝐵)))
17 simpl2 1065 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → 𝑊 ∈ NrmCVec)
182, 3, 8lnof 27610 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊))
19 ffvelrn 6357 . . . . 5 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝐴𝑋) → (𝑇𝐴) ∈ (BaseSet‘𝑊))
2018, 12, 19syl2an 494 . . . 4 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇𝐴) ∈ (BaseSet‘𝑊))
213, 7nvsid 27482 . . . 4 ((𝑊 ∈ NrmCVec ∧ (𝑇𝐴) ∈ (BaseSet‘𝑊)) → (1( ·𝑠OLD𝑊)(𝑇𝐴)) = (𝑇𝐴))
2217, 20, 21syl2anc 693 . . 3 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (1( ·𝑠OLD𝑊)(𝑇𝐴)) = (𝑇𝐴))
2322oveq1d 6665 . 2 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → ((1( ·𝑠OLD𝑊)(𝑇𝐴))𝐻(𝑇𝐵)) = ((𝑇𝐴)𝐻(𝑇𝐵)))
2410, 16, 233eqtr3d 2664 1 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) ∧ (𝐴𝑋𝐵𝑋)) → (𝑇‘(𝐴𝐺𝐵)) = ((𝑇𝐴)𝐻(𝑇𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  1c1 9937  NrmCVeccnv 27439   +𝑣 cpv 27440  BaseSetcba 27441   ·𝑠OLD cns 27442   LnOp clno 27595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-1cn 9994
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-nmcv 27455  df-lno 27599
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator