Proof of Theorem lnoadd
| Step | Hyp | Ref
| Expression |
| 1 | | ax-1cn 9994 |
. . 3
⊢ 1 ∈
ℂ |
| 2 | | lnoadd.1 |
. . . 4
⊢ 𝑋 = (BaseSet‘𝑈) |
| 3 | | eqid 2622 |
. . . 4
⊢
(BaseSet‘𝑊) =
(BaseSet‘𝑊) |
| 4 | | lnoadd.5 |
. . . 4
⊢ 𝐺 = ( +𝑣
‘𝑈) |
| 5 | | lnoadd.6 |
. . . 4
⊢ 𝐻 = ( +𝑣
‘𝑊) |
| 6 | | eqid 2622 |
. . . 4
⊢ (
·𝑠OLD ‘𝑈) = ( ·𝑠OLD
‘𝑈) |
| 7 | | eqid 2622 |
. . . 4
⊢ (
·𝑠OLD ‘𝑊) = ( ·𝑠OLD
‘𝑊) |
| 8 | | lnoadd.7 |
. . . 4
⊢ 𝐿 = (𝑈 LnOp 𝑊) |
| 9 | 2, 3, 4, 5, 6, 7, 8 | lnolin 27609 |
. . 3
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘((1(
·𝑠OLD ‘𝑈)𝐴)𝐺𝐵)) = ((1(
·𝑠OLD ‘𝑊)(𝑇‘𝐴))𝐻(𝑇‘𝐵))) |
| 10 | 1, 9 | mp3anr1 1421 |
. 2
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘((1(
·𝑠OLD ‘𝑈)𝐴)𝐺𝐵)) = ((1(
·𝑠OLD ‘𝑊)(𝑇‘𝐴))𝐻(𝑇‘𝐵))) |
| 11 | | simp1 1061 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑈 ∈ NrmCVec) |
| 12 | | simpl 473 |
. . . . 5
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ 𝑋) |
| 13 | 2, 6 | nvsid 27482 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (1(
·𝑠OLD ‘𝑈)𝐴) = 𝐴) |
| 14 | 11, 12, 13 | syl2an 494 |
. . . 4
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (1(
·𝑠OLD ‘𝑈)𝐴) = 𝐴) |
| 15 | 14 | oveq1d 6665 |
. . 3
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((1(
·𝑠OLD ‘𝑈)𝐴)𝐺𝐵) = (𝐴𝐺𝐵)) |
| 16 | 15 | fveq2d 6195 |
. 2
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘((1(
·𝑠OLD ‘𝑈)𝐴)𝐺𝐵)) = (𝑇‘(𝐴𝐺𝐵))) |
| 17 | | simpl2 1065 |
. . . 4
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝑊 ∈ NrmCVec) |
| 18 | 2, 3, 8 | lnof 27610 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊)) |
| 19 | | ffvelrn 6357 |
. . . . 5
⊢ ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ 𝐴 ∈ 𝑋) → (𝑇‘𝐴) ∈ (BaseSet‘𝑊)) |
| 20 | 18, 12, 19 | syl2an 494 |
. . . 4
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘𝐴) ∈ (BaseSet‘𝑊)) |
| 21 | 3, 7 | nvsid 27482 |
. . . 4
⊢ ((𝑊 ∈ NrmCVec ∧ (𝑇‘𝐴) ∈ (BaseSet‘𝑊)) → (1(
·𝑠OLD ‘𝑊)(𝑇‘𝐴)) = (𝑇‘𝐴)) |
| 22 | 17, 20, 21 | syl2anc 693 |
. . 3
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (1(
·𝑠OLD ‘𝑊)(𝑇‘𝐴)) = (𝑇‘𝐴)) |
| 23 | 22 | oveq1d 6665 |
. 2
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((1(
·𝑠OLD ‘𝑊)(𝑇‘𝐴))𝐻(𝑇‘𝐵)) = ((𝑇‘𝐴)𝐻(𝑇‘𝐵))) |
| 24 | 10, 16, 23 | 3eqtr3d 2664 |
1
⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝑇‘(𝐴𝐺𝐵)) = ((𝑇‘𝐴)𝐻(𝑇‘𝐵))) |