Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpset Structured version   Visualization version   GIF version

Theorem lshpset 34265
Description: The set of all hyperplanes of a left module or left vector space. The vector 𝑣 is called a generating vector for the hyperplane. (Contributed by NM, 29-Jun-2014.)
Hypotheses
Ref Expression
lshpset.v 𝑉 = (Base‘𝑊)
lshpset.n 𝑁 = (LSpan‘𝑊)
lshpset.s 𝑆 = (LSubSp‘𝑊)
lshpset.h 𝐻 = (LSHyp‘𝑊)
Assertion
Ref Expression
lshpset (𝑊𝑋𝐻 = {𝑠𝑆 ∣ (𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)})
Distinct variable groups:   𝑆,𝑠   𝑣,𝑉   𝑣,𝑠,𝑊
Allowed substitution hints:   𝑆(𝑣)   𝐻(𝑣,𝑠)   𝑁(𝑣,𝑠)   𝑉(𝑠)   𝑋(𝑣,𝑠)

Proof of Theorem lshpset
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lshpset.h . 2 𝐻 = (LSHyp‘𝑊)
2 elex 3212 . . 3 (𝑊𝑋𝑊 ∈ V)
3 fveq2 6191 . . . . . 6 (𝑤 = 𝑊 → (LSubSp‘𝑤) = (LSubSp‘𝑊))
4 lshpset.s . . . . . 6 𝑆 = (LSubSp‘𝑊)
53, 4syl6eqr 2674 . . . . 5 (𝑤 = 𝑊 → (LSubSp‘𝑤) = 𝑆)
6 fveq2 6191 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
7 lshpset.v . . . . . . . 8 𝑉 = (Base‘𝑊)
86, 7syl6eqr 2674 . . . . . . 7 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
98neeq2d 2854 . . . . . 6 (𝑤 = 𝑊 → (𝑠 ≠ (Base‘𝑤) ↔ 𝑠𝑉))
10 fveq2 6191 . . . . . . . . . 10 (𝑤 = 𝑊 → (LSpan‘𝑤) = (LSpan‘𝑊))
11 lshpset.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑊)
1210, 11syl6eqr 2674 . . . . . . . . 9 (𝑤 = 𝑊 → (LSpan‘𝑤) = 𝑁)
1312fveq1d 6193 . . . . . . . 8 (𝑤 = 𝑊 → ((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (𝑁‘(𝑠 ∪ {𝑣})))
1413, 8eqeq12d 2637 . . . . . . 7 (𝑤 = 𝑊 → (((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤) ↔ (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉))
158, 14rexeqbidv 3153 . . . . . 6 (𝑤 = 𝑊 → (∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤) ↔ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉))
169, 15anbi12d 747 . . . . 5 (𝑤 = 𝑊 → ((𝑠 ≠ (Base‘𝑤) ∧ ∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤)) ↔ (𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)))
175, 16rabeqbidv 3195 . . . 4 (𝑤 = 𝑊 → {𝑠 ∈ (LSubSp‘𝑤) ∣ (𝑠 ≠ (Base‘𝑤) ∧ ∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤))} = {𝑠𝑆 ∣ (𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)})
18 df-lshyp 34264 . . . 4 LSHyp = (𝑤 ∈ V ↦ {𝑠 ∈ (LSubSp‘𝑤) ∣ (𝑠 ≠ (Base‘𝑤) ∧ ∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤))})
19 fvex 6201 . . . . . 6 (LSubSp‘𝑊) ∈ V
204, 19eqeltri 2697 . . . . 5 𝑆 ∈ V
2120rabex 4813 . . . 4 {𝑠𝑆 ∣ (𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)} ∈ V
2217, 18, 21fvmpt 6282 . . 3 (𝑊 ∈ V → (LSHyp‘𝑊) = {𝑠𝑆 ∣ (𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)})
232, 22syl 17 . 2 (𝑊𝑋 → (LSHyp‘𝑊) = {𝑠𝑆 ∣ (𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)})
241, 23syl5eq 2668 1 (𝑊𝑋𝐻 = {𝑠𝑆 ∣ (𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  wrex 2913  {crab 2916  Vcvv 3200  cun 3572  {csn 4177  cfv 5888  Basecbs 15857  LSubSpclss 18932  LSpanclspn 18971  LSHypclsh 34262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-lshyp 34264
This theorem is referenced by:  islshp  34266
  Copyright terms: Public domain W3C validator