Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpset Structured version   Visualization version   Unicode version

Theorem lshpset 34265
Description: The set of all hyperplanes of a left module or left vector space. The vector  v is called a generating vector for the hyperplane. (Contributed by NM, 29-Jun-2014.)
Hypotheses
Ref Expression
lshpset.v  |-  V  =  ( Base `  W
)
lshpset.n  |-  N  =  ( LSpan `  W )
lshpset.s  |-  S  =  ( LSubSp `  W )
lshpset.h  |-  H  =  (LSHyp `  W )
Assertion
Ref Expression
lshpset  |-  ( W  e.  X  ->  H  =  { s  e.  S  |  ( s  =/= 
V  /\  E. v  e.  V  ( N `  ( s  u.  {
v } ) )  =  V ) } )
Distinct variable groups:    S, s    v, V    v, s, W
Allowed substitution hints:    S( v)    H( v, s)    N( v, s)    V( s)    X( v, s)

Proof of Theorem lshpset
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 lshpset.h . 2  |-  H  =  (LSHyp `  W )
2 elex 3212 . . 3  |-  ( W  e.  X  ->  W  e.  _V )
3 fveq2 6191 . . . . . 6  |-  ( w  =  W  ->  ( LSubSp `
 w )  =  ( LSubSp `  W )
)
4 lshpset.s . . . . . 6  |-  S  =  ( LSubSp `  W )
53, 4syl6eqr 2674 . . . . 5  |-  ( w  =  W  ->  ( LSubSp `
 w )  =  S )
6 fveq2 6191 . . . . . . . 8  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
7 lshpset.v . . . . . . . 8  |-  V  =  ( Base `  W
)
86, 7syl6eqr 2674 . . . . . . 7  |-  ( w  =  W  ->  ( Base `  w )  =  V )
98neeq2d 2854 . . . . . 6  |-  ( w  =  W  ->  (
s  =/=  ( Base `  w )  <->  s  =/=  V ) )
10 fveq2 6191 . . . . . . . . . 10  |-  ( w  =  W  ->  ( LSpan `  w )  =  ( LSpan `  W )
)
11 lshpset.n . . . . . . . . . 10  |-  N  =  ( LSpan `  W )
1210, 11syl6eqr 2674 . . . . . . . . 9  |-  ( w  =  W  ->  ( LSpan `  w )  =  N )
1312fveq1d 6193 . . . . . . . 8  |-  ( w  =  W  ->  (
( LSpan `  w ) `  ( s  u.  {
v } ) )  =  ( N `  ( s  u.  {
v } ) ) )
1413, 8eqeq12d 2637 . . . . . . 7  |-  ( w  =  W  ->  (
( ( LSpan `  w
) `  ( s  u.  { v } ) )  =  ( Base `  w )  <->  ( N `  ( s  u.  {
v } ) )  =  V ) )
158, 14rexeqbidv 3153 . . . . . 6  |-  ( w  =  W  ->  ( E. v  e.  ( Base `  w ) ( ( LSpan `  w ) `  ( s  u.  {
v } ) )  =  ( Base `  w
)  <->  E. v  e.  V  ( N `  ( s  u.  { v } ) )  =  V ) )
169, 15anbi12d 747 . . . . 5  |-  ( w  =  W  ->  (
( s  =/=  ( Base `  w )  /\  E. v  e.  ( Base `  w ) ( (
LSpan `  w ) `  ( s  u.  {
v } ) )  =  ( Base `  w
) )  <->  ( s  =/=  V  /\  E. v  e.  V  ( N `  ( s  u.  {
v } ) )  =  V ) ) )
175, 16rabeqbidv 3195 . . . 4  |-  ( w  =  W  ->  { s  e.  ( LSubSp `  w
)  |  ( s  =/=  ( Base `  w
)  /\  E. v  e.  ( Base `  w
) ( ( LSpan `  w ) `  (
s  u.  { v } ) )  =  ( Base `  w
) ) }  =  { s  e.  S  |  ( s  =/= 
V  /\  E. v  e.  V  ( N `  ( s  u.  {
v } ) )  =  V ) } )
18 df-lshyp 34264 . . . 4  |- LSHyp  =  ( w  e.  _V  |->  { s  e.  ( LSubSp `  w )  |  ( s  =/=  ( Base `  w )  /\  E. v  e.  ( Base `  w ) ( (
LSpan `  w ) `  ( s  u.  {
v } ) )  =  ( Base `  w
) ) } )
19 fvex 6201 . . . . . 6  |-  ( LSubSp `  W )  e.  _V
204, 19eqeltri 2697 . . . . 5  |-  S  e. 
_V
2120rabex 4813 . . . 4  |-  { s  e.  S  |  ( s  =/=  V  /\  E. v  e.  V  ( N `  ( s  u.  { v } ) )  =  V ) }  e.  _V
2217, 18, 21fvmpt 6282 . . 3  |-  ( W  e.  _V  ->  (LSHyp `  W )  =  {
s  e.  S  | 
( s  =/=  V  /\  E. v  e.  V  ( N `  ( s  u.  { v } ) )  =  V ) } )
232, 22syl 17 . 2  |-  ( W  e.  X  ->  (LSHyp `  W )  =  {
s  e.  S  | 
( s  =/=  V  /\  E. v  e.  V  ( N `  ( s  u.  { v } ) )  =  V ) } )
241, 23syl5eq 2668 1  |-  ( W  e.  X  ->  H  =  { s  e.  S  |  ( s  =/= 
V  /\  E. v  e.  V  ( N `  ( s  u.  {
v } ) )  =  V ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   {crab 2916   _Vcvv 3200    u. cun 3572   {csn 4177   ` cfv 5888   Basecbs 15857   LSubSpclss 18932   LSpanclspn 18971  LSHypclsh 34262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-lshyp 34264
This theorem is referenced by:  islshp  34266
  Copyright terms: Public domain W3C validator