MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmcom2 Structured version   Visualization version   GIF version

Theorem lsmcom2 18070
Description: Subgroup sum commutes. (Contributed by Mario Carneiro, 22-Apr-2016.)
Hypotheses
Ref Expression
lsmsubg.p = (LSSum‘𝐺)
lsmsubg.z 𝑍 = (Cntz‘𝐺)
Assertion
Ref Expression
lsmcom2 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) = (𝑈 𝑇))

Proof of Theorem lsmcom2
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1063 . . . . . . . . 9 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝑇 ⊆ (𝑍𝑈))
21sselda 3603 . . . . . . . 8 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ 𝑎𝑇) → 𝑎 ∈ (𝑍𝑈))
32adantrr 753 . . . . . . 7 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑎 ∈ (𝑍𝑈))
4 simprr 796 . . . . . . 7 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → 𝑏𝑈)
5 eqid 2622 . . . . . . . 8 (+g𝐺) = (+g𝐺)
6 lsmsubg.z . . . . . . . 8 𝑍 = (Cntz‘𝐺)
75, 6cntzi 17762 . . . . . . 7 ((𝑎 ∈ (𝑍𝑈) ∧ 𝑏𝑈) → (𝑎(+g𝐺)𝑏) = (𝑏(+g𝐺)𝑎))
83, 4, 7syl2anc 693 . . . . . 6 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → (𝑎(+g𝐺)𝑏) = (𝑏(+g𝐺)𝑎))
98eqeq2d 2632 . . . . 5 (((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑈)) → (𝑥 = (𝑎(+g𝐺)𝑏) ↔ 𝑥 = (𝑏(+g𝐺)𝑎)))
1092rexbidva 3056 . . . 4 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (∃𝑎𝑇𝑏𝑈 𝑥 = (𝑎(+g𝐺)𝑏) ↔ ∃𝑎𝑇𝑏𝑈 𝑥 = (𝑏(+g𝐺)𝑎)))
11 rexcom 3099 . . . 4 (∃𝑎𝑇𝑏𝑈 𝑥 = (𝑏(+g𝐺)𝑎) ↔ ∃𝑏𝑈𝑎𝑇 𝑥 = (𝑏(+g𝐺)𝑎))
1210, 11syl6bb 276 . . 3 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (∃𝑎𝑇𝑏𝑈 𝑥 = (𝑎(+g𝐺)𝑏) ↔ ∃𝑏𝑈𝑎𝑇 𝑥 = (𝑏(+g𝐺)𝑎)))
13 lsmsubg.p . . . . 5 = (LSSum‘𝐺)
145, 13lsmelval 18064 . . . 4 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑥 ∈ (𝑇 𝑈) ↔ ∃𝑎𝑇𝑏𝑈 𝑥 = (𝑎(+g𝐺)𝑏)))
15143adant3 1081 . . 3 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑥 ∈ (𝑇 𝑈) ↔ ∃𝑎𝑇𝑏𝑈 𝑥 = (𝑎(+g𝐺)𝑏)))
165, 13lsmelval 18064 . . . . 5 ((𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ∈ (SubGrp‘𝐺)) → (𝑥 ∈ (𝑈 𝑇) ↔ ∃𝑏𝑈𝑎𝑇 𝑥 = (𝑏(+g𝐺)𝑎)))
1716ancoms 469 . . . 4 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑥 ∈ (𝑈 𝑇) ↔ ∃𝑏𝑈𝑎𝑇 𝑥 = (𝑏(+g𝐺)𝑎)))
18173adant3 1081 . . 3 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑥 ∈ (𝑈 𝑇) ↔ ∃𝑏𝑈𝑎𝑇 𝑥 = (𝑏(+g𝐺)𝑎)))
1912, 15, 183bitr4d 300 . 2 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑥 ∈ (𝑇 𝑈) ↔ 𝑥 ∈ (𝑈 𝑇)))
2019eqrdv 2620 1 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) = (𝑈 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  wss 3574  cfv 5888  (class class class)co 6650  +gcplusg 15941  SubGrpcsubg 17588  Cntzccntz 17748  LSSumclsm 18049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-subg 17591  df-cntz 17750  df-lsm 18051
This theorem is referenced by:  lsmdisj3  18096  lsmdisj3r  18099  lsmdisj3a  18102  lsmdisj3b  18103  pj2f  18111  pj1id  18112
  Copyright terms: Public domain W3C validator