MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmpropd Structured version   Visualization version   GIF version

Theorem lsmpropd 18090
Description: If two structures have the same components (properties), they have the same subspace structure. (Contributed by Mario Carneiro, 29-Jun-2015.)
Hypotheses
Ref Expression
lsmpropd.b1 (𝜑𝐵 = (Base‘𝐾))
lsmpropd.b2 (𝜑𝐵 = (Base‘𝐿))
lsmpropd.p ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
lsmpropd.v1 (𝜑𝐾 ∈ V)
lsmpropd.v2 (𝜑𝐿 ∈ V)
Assertion
Ref Expression
lsmpropd (𝜑 → (LSSum‘𝐾) = (LSSum‘𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem lsmpropd
Dummy variables 𝑢 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp11 1091 . . . . . . 7 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → 𝜑)
2 simp12 1092 . . . . . . . . 9 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → 𝑡 ∈ 𝒫 𝐵)
32elpwid 4170 . . . . . . . 8 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → 𝑡𝐵)
4 simp2 1062 . . . . . . . 8 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → 𝑥𝑡)
53, 4sseldd 3604 . . . . . . 7 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → 𝑥𝐵)
6 simp13 1093 . . . . . . . . 9 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → 𝑢 ∈ 𝒫 𝐵)
76elpwid 4170 . . . . . . . 8 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → 𝑢𝐵)
8 simp3 1063 . . . . . . . 8 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → 𝑦𝑢)
97, 8sseldd 3604 . . . . . . 7 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → 𝑦𝐵)
10 lsmpropd.p . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
111, 5, 9, 10syl12anc 1324 . . . . . 6 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
1211mpt2eq3dva 6719 . . . . 5 ((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) → (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦)) = (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦)))
1312rneqd 5353 . . . 4 ((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) → ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦)) = ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦)))
1413mpt2eq3dva 6719 . . 3 (𝜑 → (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦))) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦))))
15 lsmpropd.b1 . . . . 5 (𝜑𝐵 = (Base‘𝐾))
1615pweqd 4163 . . . 4 (𝜑 → 𝒫 𝐵 = 𝒫 (Base‘𝐾))
17 mpt2eq12 6715 . . . 4 ((𝒫 𝐵 = 𝒫 (Base‘𝐾) ∧ 𝒫 𝐵 = 𝒫 (Base‘𝐾)) → (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦))) = (𝑡 ∈ 𝒫 (Base‘𝐾), 𝑢 ∈ 𝒫 (Base‘𝐾) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦))))
1816, 16, 17syl2anc 693 . . 3 (𝜑 → (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦))) = (𝑡 ∈ 𝒫 (Base‘𝐾), 𝑢 ∈ 𝒫 (Base‘𝐾) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦))))
19 lsmpropd.b2 . . . . 5 (𝜑𝐵 = (Base‘𝐿))
2019pweqd 4163 . . . 4 (𝜑 → 𝒫 𝐵 = 𝒫 (Base‘𝐿))
21 mpt2eq12 6715 . . . 4 ((𝒫 𝐵 = 𝒫 (Base‘𝐿) ∧ 𝒫 𝐵 = 𝒫 (Base‘𝐿)) → (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦))) = (𝑡 ∈ 𝒫 (Base‘𝐿), 𝑢 ∈ 𝒫 (Base‘𝐿) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦))))
2220, 20, 21syl2anc 693 . . 3 (𝜑 → (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦))) = (𝑡 ∈ 𝒫 (Base‘𝐿), 𝑢 ∈ 𝒫 (Base‘𝐿) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦))))
2314, 18, 223eqtr3d 2664 . 2 (𝜑 → (𝑡 ∈ 𝒫 (Base‘𝐾), 𝑢 ∈ 𝒫 (Base‘𝐾) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦))) = (𝑡 ∈ 𝒫 (Base‘𝐿), 𝑢 ∈ 𝒫 (Base‘𝐿) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦))))
24 lsmpropd.v1 . . 3 (𝜑𝐾 ∈ V)
25 eqid 2622 . . . 4 (Base‘𝐾) = (Base‘𝐾)
26 eqid 2622 . . . 4 (+g𝐾) = (+g𝐾)
27 eqid 2622 . . . 4 (LSSum‘𝐾) = (LSSum‘𝐾)
2825, 26, 27lsmfval 18053 . . 3 (𝐾 ∈ V → (LSSum‘𝐾) = (𝑡 ∈ 𝒫 (Base‘𝐾), 𝑢 ∈ 𝒫 (Base‘𝐾) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦))))
2924, 28syl 17 . 2 (𝜑 → (LSSum‘𝐾) = (𝑡 ∈ 𝒫 (Base‘𝐾), 𝑢 ∈ 𝒫 (Base‘𝐾) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦))))
30 lsmpropd.v2 . . 3 (𝜑𝐿 ∈ V)
31 eqid 2622 . . . 4 (Base‘𝐿) = (Base‘𝐿)
32 eqid 2622 . . . 4 (+g𝐿) = (+g𝐿)
33 eqid 2622 . . . 4 (LSSum‘𝐿) = (LSSum‘𝐿)
3431, 32, 33lsmfval 18053 . . 3 (𝐿 ∈ V → (LSSum‘𝐿) = (𝑡 ∈ 𝒫 (Base‘𝐿), 𝑢 ∈ 𝒫 (Base‘𝐿) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦))))
3530, 34syl 17 . 2 (𝜑 → (LSSum‘𝐿) = (𝑡 ∈ 𝒫 (Base‘𝐿), 𝑢 ∈ 𝒫 (Base‘𝐿) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦))))
3623, 29, 353eqtr4d 2666 1 (𝜑 → (LSSum‘𝐾) = (LSSum‘𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  𝒫 cpw 4158  ran crn 5115  cfv 5888  (class class class)co 6650  cmpt2 6652  Basecbs 15857  +gcplusg 15941  LSSumclsm 18049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-lsm 18051
This theorem is referenced by:  hlhillsm  37248
  Copyright terms: Public domain W3C validator