MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltxr Structured version   Visualization version   GIF version

Theorem ltxr 11949
Description: The 'less than' binary relation on the set of extended reals. Definition 12-3.1 of [Gleason] p. 173. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
ltxr ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) ∨ (𝐴 = -∞ ∧ 𝐵 = +∞)) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))))

Proof of Theorem ltxr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq12 4658 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 < 𝑦𝐴 < 𝐵))
2 df-3an 1039 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) ↔ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 < 𝑦))
32opabbii 4717 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝑥 < 𝑦)}
41, 3brab2a 5194 . . . 4 (𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵 ↔ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵))
54a1i 11 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵 ↔ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵)))
6 brun 4703 . . . 4 (𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵 ↔ (𝐴((ℝ ∪ {-∞}) × {+∞})𝐵𝐴({-∞} × ℝ)𝐵))
7 brxp 5147 . . . . . . 7 (𝐴((ℝ ∪ {-∞}) × {+∞})𝐵 ↔ (𝐴 ∈ (ℝ ∪ {-∞}) ∧ 𝐵 ∈ {+∞}))
8 elun 3753 . . . . . . . . . . 11 (𝐴 ∈ (ℝ ∪ {-∞}) ↔ (𝐴 ∈ ℝ ∨ 𝐴 ∈ {-∞}))
9 orcom 402 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∨ 𝐴 ∈ {-∞}) ↔ (𝐴 ∈ {-∞} ∨ 𝐴 ∈ ℝ))
108, 9bitri 264 . . . . . . . . . 10 (𝐴 ∈ (ℝ ∪ {-∞}) ↔ (𝐴 ∈ {-∞} ∨ 𝐴 ∈ ℝ))
11 elsng 4191 . . . . . . . . . . 11 (𝐴 ∈ ℝ* → (𝐴 ∈ {-∞} ↔ 𝐴 = -∞))
1211orbi1d 739 . . . . . . . . . 10 (𝐴 ∈ ℝ* → ((𝐴 ∈ {-∞} ∨ 𝐴 ∈ ℝ) ↔ (𝐴 = -∞ ∨ 𝐴 ∈ ℝ)))
1310, 12syl5bb 272 . . . . . . . . 9 (𝐴 ∈ ℝ* → (𝐴 ∈ (ℝ ∪ {-∞}) ↔ (𝐴 = -∞ ∨ 𝐴 ∈ ℝ)))
14 elsng 4191 . . . . . . . . 9 (𝐵 ∈ ℝ* → (𝐵 ∈ {+∞} ↔ 𝐵 = +∞))
1513, 14bi2anan9 917 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 ∈ (ℝ ∪ {-∞}) ∧ 𝐵 ∈ {+∞}) ↔ ((𝐴 = -∞ ∨ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞)))
16 andir 912 . . . . . . . 8 (((𝐴 = -∞ ∨ 𝐴 ∈ ℝ) ∧ 𝐵 = +∞) ↔ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ (𝐴 ∈ ℝ ∧ 𝐵 = +∞)))
1715, 16syl6bb 276 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 ∈ (ℝ ∪ {-∞}) ∧ 𝐵 ∈ {+∞}) ↔ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ (𝐴 ∈ ℝ ∧ 𝐵 = +∞))))
187, 17syl5bb 272 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴((ℝ ∪ {-∞}) × {+∞})𝐵 ↔ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ (𝐴 ∈ ℝ ∧ 𝐵 = +∞))))
19 brxp 5147 . . . . . . 7 (𝐴({-∞} × ℝ)𝐵 ↔ (𝐴 ∈ {-∞} ∧ 𝐵 ∈ ℝ))
2011anbi1d 741 . . . . . . . 8 (𝐴 ∈ ℝ* → ((𝐴 ∈ {-∞} ∧ 𝐵 ∈ ℝ) ↔ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))
2120adantr 481 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 ∈ {-∞} ∧ 𝐵 ∈ ℝ) ↔ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))
2219, 21syl5bb 272 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴({-∞} × ℝ)𝐵 ↔ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))
2318, 22orbi12d 746 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴((ℝ ∪ {-∞}) × {+∞})𝐵𝐴({-∞} × ℝ)𝐵) ↔ (((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ (𝐴 ∈ ℝ ∧ 𝐵 = +∞)) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ))))
24 orass 546 . . . . 5 ((((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ (𝐴 ∈ ℝ ∧ 𝐵 = +∞)) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)) ↔ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ))))
2523, 24syl6bb 276 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴((ℝ ∪ {-∞}) × {+∞})𝐵𝐴({-∞} × ℝ)𝐵) ↔ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))))
266, 25syl5bb 272 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵 ↔ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))))
275, 26orbi12d 746 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) ∨ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ))))))
28 df-ltxr 10079 . . . 4 < = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)))
2928breqi 4659 . . 3 (𝐴 < 𝐵𝐴({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)))𝐵)
30 brun 4703 . . 3 (𝐴({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)))𝐵 ↔ (𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵))
3129, 30bitri 264 . 2 (𝐴 < 𝐵 ↔ (𝐴{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)}𝐵𝐴(((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ))𝐵))
32 orass 546 . 2 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) ∨ (𝐴 = -∞ ∧ 𝐵 = +∞)) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ))) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) ∨ ((𝐴 = -∞ ∧ 𝐵 = +∞) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))))
3327, 31, 323bitr4g 303 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) ∨ (𝐴 = -∞ ∧ 𝐵 = +∞)) ∨ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∨ (𝐴 = -∞ ∧ 𝐵 ∈ ℝ)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  cun 3572  {csn 4177   class class class wbr 4653  {copab 4712   × cxp 5112  cr 9935   < cltrr 9940  +∞cpnf 10071  -∞cmnf 10072  *cxr 10073   < clt 10074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-ltxr 10079
This theorem is referenced by:  xrltnr  11953  ltpnf  11954  mnflt  11957  mnfltpnf  11960  pnfnlt  11962  nltmnf  11963
  Copyright terms: Public domain W3C validator