Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdfval Structured version   Visualization version   GIF version

Theorem mapdfval 36916
Description: Projectivity from vector space H to dual space. (Contributed by NM, 25-Jan-2015.)
Hypotheses
Ref Expression
mapdval.h 𝐻 = (LHyp‘𝐾)
mapdval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdval.s 𝑆 = (LSubSp‘𝑈)
mapdval.f 𝐹 = (LFnl‘𝑈)
mapdval.l 𝐿 = (LKer‘𝑈)
mapdval.o 𝑂 = ((ocH‘𝐾)‘𝑊)
mapdval.m 𝑀 = ((mapd‘𝐾)‘𝑊)
Assertion
Ref Expression
mapdfval ((𝐾𝑋𝑊𝐻) → 𝑀 = (𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)}))
Distinct variable groups:   𝑓,𝑠,𝐾   𝑓,𝐹   𝑆,𝑠   𝑓,𝑊,𝑠
Allowed substitution hints:   𝑆(𝑓)   𝑈(𝑓,𝑠)   𝐹(𝑠)   𝐻(𝑓,𝑠)   𝐿(𝑓,𝑠)   𝑀(𝑓,𝑠)   𝑂(𝑓,𝑠)   𝑋(𝑓,𝑠)

Proof of Theorem mapdfval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 mapdval.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
2 mapdval.h . . . . 5 𝐻 = (LHyp‘𝐾)
32mapdffval 36915 . . . 4 (𝐾𝑋 → (mapd‘𝐾) = (𝑤𝐻 ↦ (𝑠 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤)) ↦ {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ ((((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) ∧ (((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)) ⊆ 𝑠)})))
43fveq1d 6193 . . 3 (𝐾𝑋 → ((mapd‘𝐾)‘𝑊) = ((𝑤𝐻 ↦ (𝑠 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤)) ↦ {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ ((((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) ∧ (((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)) ⊆ 𝑠)}))‘𝑊))
51, 4syl5eq 2668 . 2 (𝐾𝑋𝑀 = ((𝑤𝐻 ↦ (𝑠 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤)) ↦ {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ ((((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) ∧ (((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)) ⊆ 𝑠)}))‘𝑊))
6 fveq2 6191 . . . . . . 7 (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = ((DVecH‘𝐾)‘𝑊))
7 mapdval.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
86, 7syl6eqr 2674 . . . . . 6 (𝑤 = 𝑊 → ((DVecH‘𝐾)‘𝑤) = 𝑈)
98fveq2d 6195 . . . . 5 (𝑤 = 𝑊 → (LSubSp‘((DVecH‘𝐾)‘𝑤)) = (LSubSp‘𝑈))
10 mapdval.s . . . . 5 𝑆 = (LSubSp‘𝑈)
119, 10syl6eqr 2674 . . . 4 (𝑤 = 𝑊 → (LSubSp‘((DVecH‘𝐾)‘𝑤)) = 𝑆)
128fveq2d 6195 . . . . . 6 (𝑤 = 𝑊 → (LFnl‘((DVecH‘𝐾)‘𝑤)) = (LFnl‘𝑈))
13 mapdval.f . . . . . 6 𝐹 = (LFnl‘𝑈)
1412, 13syl6eqr 2674 . . . . 5 (𝑤 = 𝑊 → (LFnl‘((DVecH‘𝐾)‘𝑤)) = 𝐹)
15 fveq2 6191 . . . . . . . . 9 (𝑤 = 𝑊 → ((ocH‘𝐾)‘𝑤) = ((ocH‘𝐾)‘𝑊))
16 mapdval.o . . . . . . . . 9 𝑂 = ((ocH‘𝐾)‘𝑊)
1715, 16syl6eqr 2674 . . . . . . . 8 (𝑤 = 𝑊 → ((ocH‘𝐾)‘𝑤) = 𝑂)
188fveq2d 6195 . . . . . . . . . . 11 (𝑤 = 𝑊 → (LKer‘((DVecH‘𝐾)‘𝑤)) = (LKer‘𝑈))
19 mapdval.l . . . . . . . . . . 11 𝐿 = (LKer‘𝑈)
2018, 19syl6eqr 2674 . . . . . . . . . 10 (𝑤 = 𝑊 → (LKer‘((DVecH‘𝐾)‘𝑤)) = 𝐿)
2120fveq1d 6193 . . . . . . . . 9 (𝑤 = 𝑊 → ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) = (𝐿𝑓))
2217, 21fveq12d 6197 . . . . . . . 8 (𝑤 = 𝑊 → (((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)) = (𝑂‘(𝐿𝑓)))
2317, 22fveq12d 6197 . . . . . . 7 (𝑤 = 𝑊 → (((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = (𝑂‘(𝑂‘(𝐿𝑓))))
2423, 21eqeq12d 2637 . . . . . 6 (𝑤 = 𝑊 → ((((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) ↔ (𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓)))
2522sseq1d 3632 . . . . . 6 (𝑤 = 𝑊 → ((((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)) ⊆ 𝑠 ↔ (𝑂‘(𝐿𝑓)) ⊆ 𝑠))
2624, 25anbi12d 747 . . . . 5 (𝑤 = 𝑊 → (((((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) ∧ (((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)) ⊆ 𝑠) ↔ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)))
2714, 26rabeqbidv 3195 . . . 4 (𝑤 = 𝑊 → {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ ((((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) ∧ (((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)) ⊆ 𝑠)} = {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)})
2811, 27mpteq12dv 4733 . . 3 (𝑤 = 𝑊 → (𝑠 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤)) ↦ {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ ((((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) ∧ (((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)) ⊆ 𝑠)}) = (𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)}))
29 eqid 2622 . . 3 (𝑤𝐻 ↦ (𝑠 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤)) ↦ {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ ((((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) ∧ (((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)) ⊆ 𝑠)})) = (𝑤𝐻 ↦ (𝑠 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤)) ↦ {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ ((((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) ∧ (((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)) ⊆ 𝑠)}))
30 fvex 6201 . . . . 5 (LSubSp‘𝑈) ∈ V
3110, 30eqeltri 2697 . . . 4 𝑆 ∈ V
3231mptex 6486 . . 3 (𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)}) ∈ V
3328, 29, 32fvmpt 6282 . 2 (𝑊𝐻 → ((𝑤𝐻 ↦ (𝑠 ∈ (LSubSp‘((DVecH‘𝐾)‘𝑤)) ↦ {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ ((((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓) ∧ (((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)) ⊆ 𝑠)}))‘𝑊) = (𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)}))
345, 33sylan9eq 2676 1 ((𝐾𝑋𝑊𝐻) → 𝑀 = (𝑠𝑆 ↦ {𝑓𝐹 ∣ ((𝑂‘(𝑂‘(𝐿𝑓))) = (𝐿𝑓) ∧ (𝑂‘(𝐿𝑓)) ⊆ 𝑠)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  wss 3574  cmpt 4729  cfv 5888  LSubSpclss 18932  LFnlclfn 34344  LKerclk 34372  LHypclh 35270  DVecHcdvh 36367  ocHcoch 36636  mapdcmpd 36913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-mapd 36914
This theorem is referenced by:  mapdval  36917  mapd1o  36937
  Copyright terms: Public domain W3C validator