MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marepvfval Structured version   Visualization version   GIF version

Theorem marepvfval 20371
Description: First substitution for the definition of the function replacing a column of a matrix by a vector. (Contributed by AV, 14-Feb-2019.) (Revised by AV, 26-Feb-2019.)
Hypotheses
Ref Expression
marepvfval.a 𝐴 = (𝑁 Mat 𝑅)
marepvfval.b 𝐵 = (Base‘𝐴)
marepvfval.q 𝑄 = (𝑁 matRepV 𝑅)
marepvfval.v 𝑉 = ((Base‘𝑅) ↑𝑚 𝑁)
Assertion
Ref Expression
marepvfval 𝑄 = (𝑚𝐵, 𝑣𝑉 ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗)))))
Distinct variable groups:   𝐵,𝑚,𝑣   𝑖,𝑁,𝑗,𝑘,𝑚,𝑣   𝑅,𝑖,𝑗,𝑘,𝑚,𝑣   𝑚,𝑉,𝑣
Allowed substitution hints:   𝐴(𝑣,𝑖,𝑗,𝑘,𝑚)   𝐵(𝑖,𝑗,𝑘)   𝑄(𝑣,𝑖,𝑗,𝑘,𝑚)   𝑉(𝑖,𝑗,𝑘)

Proof of Theorem marepvfval
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 marepvfval.q . 2 𝑄 = (𝑁 matRepV 𝑅)
2 marepvfval.b . . . . . 6 𝐵 = (Base‘𝐴)
3 fvex 6201 . . . . . 6 (Base‘𝐴) ∈ V
42, 3eqeltri 2697 . . . . 5 𝐵 ∈ V
5 marepvfval.v . . . . . . 7 𝑉 = ((Base‘𝑅) ↑𝑚 𝑁)
6 ovex 6678 . . . . . . 7 ((Base‘𝑅) ↑𝑚 𝑁) ∈ V
75, 6eqeltri 2697 . . . . . 6 𝑉 ∈ V
87a1i 11 . . . . 5 ((𝑁 ∈ V ∧ 𝑅 ∈ V) → 𝑉 ∈ V)
9 mpt2exga 7246 . . . . 5 ((𝐵 ∈ V ∧ 𝑉 ∈ V) → (𝑚𝐵, 𝑣𝑉 ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))) ∈ V)
104, 8, 9sylancr 695 . . . 4 ((𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑚𝐵, 𝑣𝑉 ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))) ∈ V)
11 oveq12 6659 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = (𝑁 Mat 𝑅))
12 marepvfval.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
1311, 12syl6eqr 2674 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = 𝐴)
1413fveq2d 6195 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = (Base‘𝐴))
1514, 2syl6eqr 2674 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = 𝐵)
16 fveq2 6191 . . . . . . . . 9 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
1716adantl 482 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘𝑟) = (Base‘𝑅))
18 simpl 473 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑛 = 𝑁)
1917, 18oveq12d 6668 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → ((Base‘𝑟) ↑𝑚 𝑛) = ((Base‘𝑅) ↑𝑚 𝑁))
2019, 5syl6eqr 2674 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → ((Base‘𝑟) ↑𝑚 𝑛) = 𝑉)
21 eqidd 2623 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗)) = if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗)))
2218, 18, 21mpt2eq123dv 6717 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑖𝑛, 𝑗𝑛 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))
2318, 22mpteq12dv 4733 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑘𝑛 ↦ (𝑖𝑛, 𝑗𝑛 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗)))) = (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗)))))
2415, 20, 23mpt2eq123dv 6717 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)), 𝑣 ∈ ((Base‘𝑟) ↑𝑚 𝑛) ↦ (𝑘𝑛 ↦ (𝑖𝑛, 𝑗𝑛 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))) = (𝑚𝐵, 𝑣𝑉 ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))))
25 df-marepv 20365 . . . . 5 matRepV = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)), 𝑣 ∈ ((Base‘𝑟) ↑𝑚 𝑛) ↦ (𝑘𝑛 ↦ (𝑖𝑛, 𝑗𝑛 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))))
2624, 25ovmpt2ga 6790 . . . 4 ((𝑁 ∈ V ∧ 𝑅 ∈ V ∧ (𝑚𝐵, 𝑣𝑉 ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))) ∈ V) → (𝑁 matRepV 𝑅) = (𝑚𝐵, 𝑣𝑉 ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))))
2710, 26mpd3an3 1425 . . 3 ((𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 matRepV 𝑅) = (𝑚𝐵, 𝑣𝑉 ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))))
2825mpt2ndm0 6875 . . . . 5 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 matRepV 𝑅) = ∅)
29 mpt20 6725 . . . . 5 (𝑚 ∈ ∅, 𝑣 ∈ ((Base‘𝑅) ↑𝑚 𝑁) ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))) = ∅
3028, 29syl6eqr 2674 . . . 4 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 matRepV 𝑅) = (𝑚 ∈ ∅, 𝑣 ∈ ((Base‘𝑅) ↑𝑚 𝑁) ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))))
3112fveq2i 6194 . . . . . . 7 (Base‘𝐴) = (Base‘(𝑁 Mat 𝑅))
322, 31eqtri 2644 . . . . . 6 𝐵 = (Base‘(𝑁 Mat 𝑅))
33 matbas0pc 20215 . . . . . 6 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (Base‘(𝑁 Mat 𝑅)) = ∅)
3432, 33syl5eq 2668 . . . . 5 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ∅)
35 mpt2eq12 6715 . . . . 5 ((𝐵 = ∅ ∧ 𝑉 = ((Base‘𝑅) ↑𝑚 𝑁)) → (𝑚𝐵, 𝑣𝑉 ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))) = (𝑚 ∈ ∅, 𝑣 ∈ ((Base‘𝑅) ↑𝑚 𝑁) ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))))
3634, 5, 35sylancl 694 . . . 4 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑚𝐵, 𝑣𝑉 ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))) = (𝑚 ∈ ∅, 𝑣 ∈ ((Base‘𝑅) ↑𝑚 𝑁) ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))))
3730, 36eqtr4d 2659 . . 3 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 matRepV 𝑅) = (𝑚𝐵, 𝑣𝑉 ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))))
3827, 37pm2.61i 176 . 2 (𝑁 matRepV 𝑅) = (𝑚𝐵, 𝑣𝑉 ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗)))))
391, 38eqtri 2644 1 𝑄 = (𝑚𝐵, 𝑣𝑉 ↦ (𝑘𝑁 ↦ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  c0 3915  ifcif 4086  cmpt 4729  cfv 5888  (class class class)co 6650  cmpt2 6652  𝑚 cmap 7857  Basecbs 15857   Mat cmat 20213   matRepV cmatrepV 20363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-slot 15861  df-base 15863  df-mat 20214  df-marepv 20365
This theorem is referenced by:  marepvval0  20372
  Copyright terms: Public domain W3C validator