| Step | Hyp | Ref
| Expression |
| 1 | | marepvfval.q |
. 2
⊢ 𝑄 = (𝑁 matRepV 𝑅) |
| 2 | | marepvfval.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐴) |
| 3 | | fvex 6201 |
. . . . . 6
⊢
(Base‘𝐴)
∈ V |
| 4 | 2, 3 | eqeltri 2697 |
. . . . 5
⊢ 𝐵 ∈ V |
| 5 | | marepvfval.v |
. . . . . . 7
⊢ 𝑉 = ((Base‘𝑅) ↑𝑚
𝑁) |
| 6 | | ovex 6678 |
. . . . . . 7
⊢
((Base‘𝑅)
↑𝑚 𝑁) ∈ V |
| 7 | 5, 6 | eqeltri 2697 |
. . . . . 6
⊢ 𝑉 ∈ V |
| 8 | 7 | a1i 11 |
. . . . 5
⊢ ((𝑁 ∈ V ∧ 𝑅 ∈ V) → 𝑉 ∈ V) |
| 9 | | mpt2exga 7246 |
. . . . 5
⊢ ((𝐵 ∈ V ∧ 𝑉 ∈ V) → (𝑚 ∈ 𝐵, 𝑣 ∈ 𝑉 ↦ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗))))) ∈ V) |
| 10 | 4, 8, 9 | sylancr 695 |
. . . 4
⊢ ((𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑚 ∈ 𝐵, 𝑣 ∈ 𝑉 ↦ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗))))) ∈ V) |
| 11 | | oveq12 6659 |
. . . . . . . . 9
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 Mat 𝑟) = (𝑁 Mat 𝑅)) |
| 12 | | marepvfval.a |
. . . . . . . . 9
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 13 | 11, 12 | syl6eqr 2674 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑛 Mat 𝑟) = 𝐴) |
| 14 | 13 | fveq2d 6195 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = (Base‘𝐴)) |
| 15 | 14, 2 | syl6eqr 2674 |
. . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = 𝐵) |
| 16 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) |
| 17 | 16 | adantl 482 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (Base‘𝑟) = (Base‘𝑅)) |
| 18 | | simpl 473 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → 𝑛 = 𝑁) |
| 19 | 17, 18 | oveq12d 6668 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → ((Base‘𝑟) ↑𝑚 𝑛) = ((Base‘𝑅) ↑𝑚
𝑁)) |
| 20 | 19, 5 | syl6eqr 2674 |
. . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → ((Base‘𝑟) ↑𝑚 𝑛) = 𝑉) |
| 21 | | eqidd 2623 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗)) = if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗))) |
| 22 | 18, 18, 21 | mpt2eq123dv 6717 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗)))) |
| 23 | 18, 22 | mpteq12dv 4733 |
. . . . . 6
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑘 ∈ 𝑛 ↦ (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗)))) = (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗))))) |
| 24 | 15, 20, 23 | mpt2eq123dv 6717 |
. . . . 5
⊢ ((𝑛 = 𝑁 ∧ 𝑟 = 𝑅) → (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)), 𝑣 ∈ ((Base‘𝑟) ↑𝑚 𝑛) ↦ (𝑘 ∈ 𝑛 ↦ (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗))))) = (𝑚 ∈ 𝐵, 𝑣 ∈ 𝑉 ↦ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗)))))) |
| 25 | | df-marepv 20365 |
. . . . 5
⊢ matRepV
= (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)), 𝑣 ∈ ((Base‘𝑟) ↑𝑚 𝑛) ↦ (𝑘 ∈ 𝑛 ↦ (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗)))))) |
| 26 | 24, 25 | ovmpt2ga 6790 |
. . . 4
⊢ ((𝑁 ∈ V ∧ 𝑅 ∈ V ∧ (𝑚 ∈ 𝐵, 𝑣 ∈ 𝑉 ↦ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗))))) ∈ V) → (𝑁 matRepV 𝑅) = (𝑚 ∈ 𝐵, 𝑣 ∈ 𝑉 ↦ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗)))))) |
| 27 | 10, 26 | mpd3an3 1425 |
. . 3
⊢ ((𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 matRepV 𝑅) = (𝑚 ∈ 𝐵, 𝑣 ∈ 𝑉 ↦ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗)))))) |
| 28 | 25 | mpt2ndm0 6875 |
. . . . 5
⊢ (¬
(𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 matRepV 𝑅) = ∅) |
| 29 | | mpt20 6725 |
. . . . 5
⊢ (𝑚 ∈ ∅, 𝑣 ∈ ((Base‘𝑅) ↑𝑚
𝑁) ↦ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗))))) = ∅ |
| 30 | 28, 29 | syl6eqr 2674 |
. . . 4
⊢ (¬
(𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 matRepV 𝑅) = (𝑚 ∈ ∅, 𝑣 ∈ ((Base‘𝑅) ↑𝑚 𝑁) ↦ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗)))))) |
| 31 | 12 | fveq2i 6194 |
. . . . . . 7
⊢
(Base‘𝐴) =
(Base‘(𝑁 Mat 𝑅)) |
| 32 | 2, 31 | eqtri 2644 |
. . . . . 6
⊢ 𝐵 = (Base‘(𝑁 Mat 𝑅)) |
| 33 | | matbas0pc 20215 |
. . . . . 6
⊢ (¬
(𝑁 ∈ V ∧ 𝑅 ∈ V) →
(Base‘(𝑁 Mat 𝑅)) = ∅) |
| 34 | 32, 33 | syl5eq 2668 |
. . . . 5
⊢ (¬
(𝑁 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ∅) |
| 35 | | mpt2eq12 6715 |
. . . . 5
⊢ ((𝐵 = ∅ ∧ 𝑉 = ((Base‘𝑅) ↑𝑚
𝑁)) → (𝑚 ∈ 𝐵, 𝑣 ∈ 𝑉 ↦ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗))))) = (𝑚 ∈ ∅, 𝑣 ∈ ((Base‘𝑅) ↑𝑚 𝑁) ↦ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗)))))) |
| 36 | 34, 5, 35 | sylancl 694 |
. . . 4
⊢ (¬
(𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑚 ∈ 𝐵, 𝑣 ∈ 𝑉 ↦ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗))))) = (𝑚 ∈ ∅, 𝑣 ∈ ((Base‘𝑅) ↑𝑚 𝑁) ↦ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗)))))) |
| 37 | 30, 36 | eqtr4d 2659 |
. . 3
⊢ (¬
(𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 matRepV 𝑅) = (𝑚 ∈ 𝐵, 𝑣 ∈ 𝑉 ↦ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗)))))) |
| 38 | 27, 37 | pm2.61i 176 |
. 2
⊢ (𝑁 matRepV 𝑅) = (𝑚 ∈ 𝐵, 𝑣 ∈ 𝑉 ↦ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗))))) |
| 39 | 1, 38 | eqtri 2644 |
1
⊢ 𝑄 = (𝑚 ∈ 𝐵, 𝑣 ∈ 𝑉 ↦ (𝑘 ∈ 𝑁 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗))))) |