MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marypha2lem4 Structured version   Visualization version   GIF version

Theorem marypha2lem4 8344
Description: Lemma for marypha2 8345. Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015.)
Hypothesis
Ref Expression
marypha2lem.t 𝑇 = 𝑥𝐴 ({𝑥} × (𝐹𝑥))
Assertion
Ref Expression
marypha2lem4 ((𝐹 Fn 𝐴𝑋𝐴) → (𝑇𝑋) = (𝐹𝑋))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝑋
Allowed substitution hint:   𝑇(𝑥)

Proof of Theorem marypha2lem4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 marypha2lem.t . . . . . 6 𝑇 = 𝑥𝐴 ({𝑥} × (𝐹𝑥))
21marypha2lem2 8342 . . . . 5 𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))}
32imaeq1i 5463 . . . 4 (𝑇𝑋) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} “ 𝑋)
4 df-ima 5127 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} “ 𝑋) = ran ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} ↾ 𝑋)
53, 4eqtri 2644 . . 3 (𝑇𝑋) = ran ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} ↾ 𝑋)
6 resopab2 5448 . . . . . 6 (𝑋𝐴 → ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} ↾ 𝑋) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑋𝑦 ∈ (𝐹𝑥))})
76adantl 482 . . . . 5 ((𝐹 Fn 𝐴𝑋𝐴) → ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} ↾ 𝑋) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑋𝑦 ∈ (𝐹𝑥))})
87rneqd 5353 . . . 4 ((𝐹 Fn 𝐴𝑋𝐴) → ran ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} ↾ 𝑋) = ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑋𝑦 ∈ (𝐹𝑥))})
9 rnopab 5370 . . . . 5 ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑋𝑦 ∈ (𝐹𝑥))} = {𝑦 ∣ ∃𝑥(𝑥𝑋𝑦 ∈ (𝐹𝑥))}
10 df-rex 2918 . . . . . . . . 9 (∃𝑥𝑋 𝑦 ∈ (𝐹𝑥) ↔ ∃𝑥(𝑥𝑋𝑦 ∈ (𝐹𝑥)))
1110bicomi 214 . . . . . . . 8 (∃𝑥(𝑥𝑋𝑦 ∈ (𝐹𝑥)) ↔ ∃𝑥𝑋 𝑦 ∈ (𝐹𝑥))
1211abbii 2739 . . . . . . 7 {𝑦 ∣ ∃𝑥(𝑥𝑋𝑦 ∈ (𝐹𝑥))} = {𝑦 ∣ ∃𝑥𝑋 𝑦 ∈ (𝐹𝑥)}
13 df-iun 4522 . . . . . . 7 𝑥𝑋 (𝐹𝑥) = {𝑦 ∣ ∃𝑥𝑋 𝑦 ∈ (𝐹𝑥)}
1412, 13eqtr4i 2647 . . . . . 6 {𝑦 ∣ ∃𝑥(𝑥𝑋𝑦 ∈ (𝐹𝑥))} = 𝑥𝑋 (𝐹𝑥)
1514a1i 11 . . . . 5 ((𝐹 Fn 𝐴𝑋𝐴) → {𝑦 ∣ ∃𝑥(𝑥𝑋𝑦 ∈ (𝐹𝑥))} = 𝑥𝑋 (𝐹𝑥))
169, 15syl5eq 2668 . . . 4 ((𝐹 Fn 𝐴𝑋𝐴) → ran {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑋𝑦 ∈ (𝐹𝑥))} = 𝑥𝑋 (𝐹𝑥))
178, 16eqtrd 2656 . . 3 ((𝐹 Fn 𝐴𝑋𝐴) → ran ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐹𝑥))} ↾ 𝑋) = 𝑥𝑋 (𝐹𝑥))
185, 17syl5eq 2668 . 2 ((𝐹 Fn 𝐴𝑋𝐴) → (𝑇𝑋) = 𝑥𝑋 (𝐹𝑥))
19 fnfun 5988 . . . 4 (𝐹 Fn 𝐴 → Fun 𝐹)
2019adantr 481 . . 3 ((𝐹 Fn 𝐴𝑋𝐴) → Fun 𝐹)
21 funiunfv 6506 . . 3 (Fun 𝐹 𝑥𝑋 (𝐹𝑥) = (𝐹𝑋))
2220, 21syl 17 . 2 ((𝐹 Fn 𝐴𝑋𝐴) → 𝑥𝑋 (𝐹𝑥) = (𝐹𝑋))
2318, 22eqtrd 2656 1 ((𝐹 Fn 𝐴𝑋𝐴) → (𝑇𝑋) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wex 1704  wcel 1990  {cab 2608  wrex 2913  wss 3574  {csn 4177   cuni 4436   ciun 4520  {copab 4712   × cxp 5112  ran crn 5115  cres 5116  cima 5117  Fun wfun 5882   Fn wfn 5883  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  marypha2  8345
  Copyright terms: Public domain W3C validator