![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metustel | Structured version Visualization version GIF version |
Description: Define a filter base 𝐹 generated by a metric 𝐷. (Contributed by Thierry Arnoux, 22-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.) |
Ref | Expression |
---|---|
metust.1 | ⊢ 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) |
Ref | Expression |
---|---|
metustel | ⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ 𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (◡𝐷 “ (0[,)𝑎)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metust.1 | . . 3 ⊢ 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) | |
2 | 1 | eleq2i 2693 | . 2 ⊢ (𝐵 ∈ 𝐹 ↔ 𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎)))) |
3 | elex 3212 | . . . 4 ⊢ (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) → 𝐵 ∈ V) | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) → 𝐵 ∈ V)) |
5 | cnvexg 7112 | . . . . 5 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ◡𝐷 ∈ V) | |
6 | imaexg 7103 | . . . . 5 ⊢ (◡𝐷 ∈ V → (◡𝐷 “ (0[,)𝑎)) ∈ V) | |
7 | eleq1a 2696 | . . . . 5 ⊢ ((◡𝐷 “ (0[,)𝑎)) ∈ V → (𝐵 = (◡𝐷 “ (0[,)𝑎)) → 𝐵 ∈ V)) | |
8 | 5, 6, 7 | 3syl 18 | . . . 4 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐵 = (◡𝐷 “ (0[,)𝑎)) → 𝐵 ∈ V)) |
9 | 8 | rexlimdvw 3034 | . . 3 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (∃𝑎 ∈ ℝ+ 𝐵 = (◡𝐷 “ (0[,)𝑎)) → 𝐵 ∈ V)) |
10 | eqid 2622 | . . . . 5 ⊢ (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) = (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) | |
11 | 10 | elrnmpt 5372 | . . . 4 ⊢ (𝐵 ∈ V → (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (◡𝐷 “ (0[,)𝑎)))) |
12 | 11 | a1i 11 | . . 3 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ V → (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (◡𝐷 “ (0[,)𝑎))))) |
13 | 4, 9, 12 | pm5.21ndd 369 | . 2 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (◡𝐷 “ (0[,)𝑎)))) |
14 | 2, 13 | syl5bb 272 | 1 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ 𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (◡𝐷 “ (0[,)𝑎)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ∈ wcel 1990 ∃wrex 2913 Vcvv 3200 ↦ cmpt 4729 ◡ccnv 5113 ran crn 5115 “ cima 5117 ‘cfv 5888 (class class class)co 6650 0cc0 9936 ℝ+crp 11832 [,)cico 12177 PsMetcpsmet 19730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-xp 5120 df-rel 5121 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 |
This theorem is referenced by: metustto 22358 metustid 22359 metustexhalf 22361 metustfbas 22362 cfilucfil 22364 metucn 22376 |
Copyright terms: Public domain | W3C validator |