MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustel Structured version   Visualization version   GIF version

Theorem metustel 22355
Description: Define a filter base 𝐹 generated by a metric 𝐷. (Contributed by Thierry Arnoux, 22-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
Assertion
Ref Expression
metustel (𝐷 ∈ (PsMet‘𝑋) → (𝐵𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑎))))
Distinct variable groups:   𝐵,𝑎   𝐷,𝑎   𝑋,𝑎
Allowed substitution hint:   𝐹(𝑎)

Proof of Theorem metustel
StepHypRef Expression
1 metust.1 . . 3 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
21eleq2i 2693 . 2 (𝐵𝐹𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))))
3 elex 3212 . . . 4 (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) → 𝐵 ∈ V)
43a1i 11 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) → 𝐵 ∈ V))
5 cnvexg 7112 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → 𝐷 ∈ V)
6 imaexg 7103 . . . . 5 (𝐷 ∈ V → (𝐷 “ (0[,)𝑎)) ∈ V)
7 eleq1a 2696 . . . . 5 ((𝐷 “ (0[,)𝑎)) ∈ V → (𝐵 = (𝐷 “ (0[,)𝑎)) → 𝐵 ∈ V))
85, 6, 73syl 18 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → (𝐵 = (𝐷 “ (0[,)𝑎)) → 𝐵 ∈ V))
98rexlimdvw 3034 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (∃𝑎 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑎)) → 𝐵 ∈ V))
10 eqid 2622 . . . . 5 (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
1110elrnmpt 5372 . . . 4 (𝐵 ∈ V → (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑎))))
1211a1i 11 . . 3 (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ V → (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑎)))))
134, 9, 12pm5.21ndd 369 . 2 (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑎))))
142, 13syl5bb 272 1 (𝐷 ∈ (PsMet‘𝑋) → (𝐵𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑎))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  wcel 1990  wrex 2913  Vcvv 3200  cmpt 4729  ccnv 5113  ran crn 5115  cima 5117  cfv 5888  (class class class)co 6650  0cc0 9936  +crp 11832  [,)cico 12177  PsMetcpsmet 19730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127
This theorem is referenced by:  metustto  22358  metustid  22359  metustexhalf  22361  metustfbas  22362  cfilucfil  22364  metucn  22376
  Copyright terms: Public domain W3C validator