MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustto Structured version   Visualization version   GIF version

Theorem metustto 22358
Description: Any two elements of the filter base generated by the metric 𝐷 can be compared, like for RR+ (i.e. it's totally ordered). (Contributed by Thierry Arnoux, 22-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
Assertion
Ref Expression
metustto ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → (𝐴𝐵𝐵𝐴))
Distinct variable groups:   𝐵,𝑎   𝐷,𝑎   𝑋,𝑎   𝐴,𝑎   𝐹,𝑎

Proof of Theorem metustto
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 simpll 790 . . . . 5 (((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) → 𝑎 ∈ ℝ+)
21rpred 11872 . . . 4 (((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) → 𝑎 ∈ ℝ)
3 simplr 792 . . . . 5 (((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) → 𝑏 ∈ ℝ+)
43rpred 11872 . . . 4 (((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) → 𝑏 ∈ ℝ)
5 simpllr 799 . . . . . . . 8 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑎𝑏) → 𝑏 ∈ ℝ+)
65rpred 11872 . . . . . . 7 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑎𝑏) → 𝑏 ∈ ℝ)
7 0xr 10086 . . . . . . . . . 10 0 ∈ ℝ*
87a1i 11 . . . . . . . . 9 ((𝑏 ∈ ℝ ∧ 𝑎𝑏) → 0 ∈ ℝ*)
9 simpl 473 . . . . . . . . . 10 ((𝑏 ∈ ℝ ∧ 𝑎𝑏) → 𝑏 ∈ ℝ)
109rexrd 10089 . . . . . . . . 9 ((𝑏 ∈ ℝ ∧ 𝑎𝑏) → 𝑏 ∈ ℝ*)
11 0le0 11110 . . . . . . . . . 10 0 ≤ 0
1211a1i 11 . . . . . . . . 9 ((𝑏 ∈ ℝ ∧ 𝑎𝑏) → 0 ≤ 0)
13 simpr 477 . . . . . . . . 9 ((𝑏 ∈ ℝ ∧ 𝑎𝑏) → 𝑎𝑏)
14 icossico 12243 . . . . . . . . 9 (((0 ∈ ℝ*𝑏 ∈ ℝ*) ∧ (0 ≤ 0 ∧ 𝑎𝑏)) → (0[,)𝑎) ⊆ (0[,)𝑏))
158, 10, 12, 13, 14syl22anc 1327 . . . . . . . 8 ((𝑏 ∈ ℝ ∧ 𝑎𝑏) → (0[,)𝑎) ⊆ (0[,)𝑏))
16 imass2 5501 . . . . . . . 8 ((0[,)𝑎) ⊆ (0[,)𝑏) → (𝐷 “ (0[,)𝑎)) ⊆ (𝐷 “ (0[,)𝑏)))
1715, 16syl 17 . . . . . . 7 ((𝑏 ∈ ℝ ∧ 𝑎𝑏) → (𝐷 “ (0[,)𝑎)) ⊆ (𝐷 “ (0[,)𝑏)))
186, 17sylancom 701 . . . . . 6 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑎𝑏) → (𝐷 “ (0[,)𝑎)) ⊆ (𝐷 “ (0[,)𝑏)))
19 simplrl 800 . . . . . 6 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑎𝑏) → 𝐴 = (𝐷 “ (0[,)𝑎)))
20 simplrr 801 . . . . . 6 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑎𝑏) → 𝐵 = (𝐷 “ (0[,)𝑏)))
2118, 19, 203sstr4d 3648 . . . . 5 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑎𝑏) → 𝐴𝐵)
2221orcd 407 . . . 4 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑎𝑏) → (𝐴𝐵𝐵𝐴))
23 simplll 798 . . . . . . . 8 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑏𝑎) → 𝑎 ∈ ℝ+)
2423rpred 11872 . . . . . . 7 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑏𝑎) → 𝑎 ∈ ℝ)
257a1i 11 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑏𝑎) → 0 ∈ ℝ*)
26 simpl 473 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑏𝑎) → 𝑎 ∈ ℝ)
2726rexrd 10089 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑏𝑎) → 𝑎 ∈ ℝ*)
2811a1i 11 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑏𝑎) → 0 ≤ 0)
29 simpr 477 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑏𝑎) → 𝑏𝑎)
30 icossico 12243 . . . . . . . . 9 (((0 ∈ ℝ*𝑎 ∈ ℝ*) ∧ (0 ≤ 0 ∧ 𝑏𝑎)) → (0[,)𝑏) ⊆ (0[,)𝑎))
3125, 27, 28, 29, 30syl22anc 1327 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 𝑏𝑎) → (0[,)𝑏) ⊆ (0[,)𝑎))
32 imass2 5501 . . . . . . . 8 ((0[,)𝑏) ⊆ (0[,)𝑎) → (𝐷 “ (0[,)𝑏)) ⊆ (𝐷 “ (0[,)𝑎)))
3331, 32syl 17 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 𝑏𝑎) → (𝐷 “ (0[,)𝑏)) ⊆ (𝐷 “ (0[,)𝑎)))
3424, 33sylancom 701 . . . . . 6 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑏𝑎) → (𝐷 “ (0[,)𝑏)) ⊆ (𝐷 “ (0[,)𝑎)))
35 simplrr 801 . . . . . 6 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑏𝑎) → 𝐵 = (𝐷 “ (0[,)𝑏)))
36 simplrl 800 . . . . . 6 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑏𝑎) → 𝐴 = (𝐷 “ (0[,)𝑎)))
3734, 35, 363sstr4d 3648 . . . . 5 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑏𝑎) → 𝐵𝐴)
3837olcd 408 . . . 4 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑏𝑎) → (𝐴𝐵𝐵𝐴))
392, 4, 22, 38lecasei 10143 . . 3 (((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) → (𝐴𝐵𝐵𝐴))
4039adantlll 754 . 2 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹𝐵𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) → (𝐴𝐵𝐵𝐴))
41 metust.1 . . . . . 6 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
4241metustel 22355 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → (𝐴𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎))))
4342biimpa 501 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎)))
44433adant3 1081 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎)))
45 oveq2 6658 . . . . . . . . . 10 (𝑎 = 𝑏 → (0[,)𝑎) = (0[,)𝑏))
4645imaeq2d 5466 . . . . . . . . 9 (𝑎 = 𝑏 → (𝐷 “ (0[,)𝑎)) = (𝐷 “ (0[,)𝑏)))
4746cbvmptv 4750 . . . . . . . 8 (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))
4847rneqi 5352 . . . . . . 7 ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))
4941, 48eqtri 2644 . . . . . 6 𝐹 = ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))
5049metustel 22355 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → (𝐵𝐹 ↔ ∃𝑏 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑏))))
5150biimpa 501 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵𝐹) → ∃𝑏 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑏)))
52513adant2 1080 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → ∃𝑏 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑏)))
53 reeanv 3107 . . 3 (∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏))) ↔ (∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎)) ∧ ∃𝑏 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑏))))
5444, 52, 53sylanbrc 698 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → ∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏))))
5540, 54r19.29vva 3081 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → (𝐴𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  wss 3574   class class class wbr 4653  cmpt 4729  ccnv 5113  ran crn 5115  cima 5117  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936  *cxr 10073  cle 10075  +crp 11832  [,)cico 12177  PsMetcpsmet 19730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-rp 11833  df-ico 12181
This theorem is referenced by:  metustfbas  22362
  Copyright terms: Public domain W3C validator