MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metucn Structured version   Visualization version   GIF version

Theorem metucn 22376
Description: Uniform continuity in metric spaces. Compare the order of the quantifiers with metcn 22348. (Contributed by Thierry Arnoux, 26-Jan-2018.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypotheses
Ref Expression
metucn.u 𝑈 = (metUnif‘𝐶)
metucn.v 𝑉 = (metUnif‘𝐷)
metucn.x (𝜑𝑋 ≠ ∅)
metucn.y (𝜑𝑌 ≠ ∅)
metucn.c (𝜑𝐶 ∈ (PsMet‘𝑋))
metucn.d (𝜑𝐷 ∈ (PsMet‘𝑌))
Assertion
Ref Expression
metucn (𝜑 → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑑 ∈ ℝ+𝑐 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐶𝑦) < 𝑐 → ((𝐹𝑥)𝐷(𝐹𝑦)) < 𝑑))))
Distinct variable groups:   𝑐,𝑑,𝑥,𝑦,𝐶   𝐷,𝑐,𝑑,𝑥,𝑦   𝐹,𝑐,𝑑,𝑥,𝑦   𝑥,𝑈,𝑦   𝑥,𝑉   𝑋,𝑐,𝑑,𝑥,𝑦   𝑌,𝑐,𝑑,𝑥,𝑦   𝜑,𝑐,𝑑,𝑥,𝑦
Allowed substitution hints:   𝑈(𝑐,𝑑)   𝑉(𝑦,𝑐,𝑑)

Proof of Theorem metucn
Dummy variables 𝑎 𝑒 𝑢 𝑣 𝑏 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metucn.u . . . . . 6 𝑈 = (metUnif‘𝐶)
2 metucn.c . . . . . . 7 (𝜑𝐶 ∈ (PsMet‘𝑋))
3 metuval 22354 . . . . . . 7 (𝐶 ∈ (PsMet‘𝑋) → (metUnif‘𝐶) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))))
42, 3syl 17 . . . . . 6 (𝜑 → (metUnif‘𝐶) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))))
51, 4syl5eq 2668 . . . . 5 (𝜑𝑈 = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))))
6 metucn.v . . . . . 6 𝑉 = (metUnif‘𝐷)
7 metucn.d . . . . . . 7 (𝜑𝐷 ∈ (PsMet‘𝑌))
8 metuval 22354 . . . . . . 7 (𝐷 ∈ (PsMet‘𝑌) → (metUnif‘𝐷) = ((𝑌 × 𝑌)filGenran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))))
97, 8syl 17 . . . . . 6 (𝜑 → (metUnif‘𝐷) = ((𝑌 × 𝑌)filGenran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))))
106, 9syl5eq 2668 . . . . 5 (𝜑𝑉 = ((𝑌 × 𝑌)filGenran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))))
115, 10oveq12d 6668 . . . 4 (𝜑 → (𝑈 Cnu𝑉) = (((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))) Cnu((𝑌 × 𝑌)filGenran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏))))))
1211eleq2d 2687 . . 3 (𝜑 → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ 𝐹 ∈ (((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))) Cnu((𝑌 × 𝑌)filGenran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))))))
13 eqid 2622 . . . 4 ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))) = ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎))))
14 eqid 2622 . . . 4 ((𝑌 × 𝑌)filGenran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))) = ((𝑌 × 𝑌)filGenran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏))))
15 metucn.x . . . . 5 (𝜑𝑋 ≠ ∅)
16 oveq2 6658 . . . . . . . . 9 (𝑎 = 𝑐 → (0[,)𝑎) = (0[,)𝑐))
1716imaeq2d 5466 . . . . . . . 8 (𝑎 = 𝑐 → (𝐶 “ (0[,)𝑎)) = (𝐶 “ (0[,)𝑐)))
1817cbvmptv 4750 . . . . . . 7 (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎))) = (𝑐 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑐)))
1918rneqi 5352 . . . . . 6 ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎))) = ran (𝑐 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑐)))
2019metust 22363 . . . . 5 ((𝑋 ≠ ∅ ∧ 𝐶 ∈ (PsMet‘𝑋)) → ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))) ∈ (UnifOn‘𝑋))
2115, 2, 20syl2anc 693 . . . 4 (𝜑 → ((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))) ∈ (UnifOn‘𝑋))
22 metucn.y . . . . 5 (𝜑𝑌 ≠ ∅)
23 oveq2 6658 . . . . . . . . 9 (𝑏 = 𝑑 → (0[,)𝑏) = (0[,)𝑑))
2423imaeq2d 5466 . . . . . . . 8 (𝑏 = 𝑑 → (𝐷 “ (0[,)𝑏)) = (𝐷 “ (0[,)𝑑)))
2524cbvmptv 4750 . . . . . . 7 (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏))) = (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))
2625rneqi 5352 . . . . . 6 ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏))) = ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))
2726metust 22363 . . . . 5 ((𝑌 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑌)) → ((𝑌 × 𝑌)filGenran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))) ∈ (UnifOn‘𝑌))
2822, 7, 27syl2anc 693 . . . 4 (𝜑 → ((𝑌 × 𝑌)filGenran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))) ∈ (UnifOn‘𝑌))
29 oveq2 6658 . . . . . . . . 9 (𝑎 = 𝑒 → (0[,)𝑎) = (0[,)𝑒))
3029imaeq2d 5466 . . . . . . . 8 (𝑎 = 𝑒 → (𝐶 “ (0[,)𝑎)) = (𝐶 “ (0[,)𝑒)))
3130cbvmptv 4750 . . . . . . 7 (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎))) = (𝑒 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑒)))
3231rneqi 5352 . . . . . 6 ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎))) = ran (𝑒 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑒)))
3332metustfbas 22362 . . . . 5 ((𝑋 ≠ ∅ ∧ 𝐶 ∈ (PsMet‘𝑋)) → ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎))) ∈ (fBas‘(𝑋 × 𝑋)))
3415, 2, 33syl2anc 693 . . . 4 (𝜑 → ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎))) ∈ (fBas‘(𝑋 × 𝑋)))
35 oveq2 6658 . . . . . . . . 9 (𝑏 = 𝑓 → (0[,)𝑏) = (0[,)𝑓))
3635imaeq2d 5466 . . . . . . . 8 (𝑏 = 𝑓 → (𝐷 “ (0[,)𝑏)) = (𝐷 “ (0[,)𝑓)))
3736cbvmptv 4750 . . . . . . 7 (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏))) = (𝑓 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑓)))
3837rneqi 5352 . . . . . 6 ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏))) = ran (𝑓 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑓)))
3938metustfbas 22362 . . . . 5 ((𝑌 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑌)) → ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏))) ∈ (fBas‘(𝑌 × 𝑌)))
4022, 7, 39syl2anc 693 . . . 4 (𝜑 → ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏))) ∈ (fBas‘(𝑌 × 𝑌)))
4113, 14, 21, 28, 34, 40isucn2 22083 . . 3 (𝜑 → (𝐹 ∈ (((𝑋 × 𝑋)filGenran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))) Cnu((𝑌 × 𝑌)filGenran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏))))) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑣 ∈ ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))∃𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))∀𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦)))))
4212, 41bitrd 268 . 2 (𝜑 → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑣 ∈ ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))∃𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))∀𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦)))))
43 eqid 2622 . . . . . . . . . 10 (𝐷 “ (0[,)𝑑)) = (𝐷 “ (0[,)𝑑))
44 oveq2 6658 . . . . . . . . . . . . 13 (𝑓 = 𝑑 → (0[,)𝑓) = (0[,)𝑑))
4544imaeq2d 5466 . . . . . . . . . . . 12 (𝑓 = 𝑑 → (𝐷 “ (0[,)𝑓)) = (𝐷 “ (0[,)𝑑)))
4645eqeq2d 2632 . . . . . . . . . . 11 (𝑓 = 𝑑 → ((𝐷 “ (0[,)𝑑)) = (𝐷 “ (0[,)𝑓)) ↔ (𝐷 “ (0[,)𝑑)) = (𝐷 “ (0[,)𝑑))))
4746rspcev 3309 . . . . . . . . . 10 ((𝑑 ∈ ℝ+ ∧ (𝐷 “ (0[,)𝑑)) = (𝐷 “ (0[,)𝑑))) → ∃𝑓 ∈ ℝ+ (𝐷 “ (0[,)𝑑)) = (𝐷 “ (0[,)𝑓)))
4843, 47mpan2 707 . . . . . . . . 9 (𝑑 ∈ ℝ+ → ∃𝑓 ∈ ℝ+ (𝐷 “ (0[,)𝑑)) = (𝐷 “ (0[,)𝑓)))
4948adantl 482 . . . . . . . 8 ((𝜑𝑑 ∈ ℝ+) → ∃𝑓 ∈ ℝ+ (𝐷 “ (0[,)𝑑)) = (𝐷 “ (0[,)𝑓)))
5038metustel 22355 . . . . . . . . . 10 (𝐷 ∈ (PsMet‘𝑌) → ((𝐷 “ (0[,)𝑑)) ∈ ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏))) ↔ ∃𝑓 ∈ ℝ+ (𝐷 “ (0[,)𝑑)) = (𝐷 “ (0[,)𝑓))))
517, 50syl 17 . . . . . . . . 9 (𝜑 → ((𝐷 “ (0[,)𝑑)) ∈ ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏))) ↔ ∃𝑓 ∈ ℝ+ (𝐷 “ (0[,)𝑑)) = (𝐷 “ (0[,)𝑓))))
5251adantr 481 . . . . . . . 8 ((𝜑𝑑 ∈ ℝ+) → ((𝐷 “ (0[,)𝑑)) ∈ ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏))) ↔ ∃𝑓 ∈ ℝ+ (𝐷 “ (0[,)𝑑)) = (𝐷 “ (0[,)𝑓))))
5349, 52mpbird 247 . . . . . . 7 ((𝜑𝑑 ∈ ℝ+) → (𝐷 “ (0[,)𝑑)) ∈ ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏))))
5426metustel 22355 . . . . . . . 8 (𝐷 ∈ (PsMet‘𝑌) → (𝑣 ∈ ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏))) ↔ ∃𝑑 ∈ ℝ+ 𝑣 = (𝐷 “ (0[,)𝑑))))
557, 54syl 17 . . . . . . 7 (𝜑 → (𝑣 ∈ ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏))) ↔ ∃𝑑 ∈ ℝ+ 𝑣 = (𝐷 “ (0[,)𝑑))))
56 simpr 477 . . . . . . . . . . 11 ((𝜑𝑣 = (𝐷 “ (0[,)𝑑))) → 𝑣 = (𝐷 “ (0[,)𝑑)))
5756breqd 4664 . . . . . . . . . 10 ((𝜑𝑣 = (𝐷 “ (0[,)𝑑))) → ((𝐹𝑥)𝑣(𝐹𝑦) ↔ (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦)))
5857imbi2d 330 . . . . . . . . 9 ((𝜑𝑣 = (𝐷 “ (0[,)𝑑))) → ((𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦)) ↔ (𝑥𝑢𝑦 → (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦))))
5958ralbidv 2986 . . . . . . . 8 ((𝜑𝑣 = (𝐷 “ (0[,)𝑑))) → (∀𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦)) ↔ ∀𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦))))
6059rexralbidv 3058 . . . . . . 7 ((𝜑𝑣 = (𝐷 “ (0[,)𝑑))) → (∃𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))∀𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦)) ↔ ∃𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))∀𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦))))
6153, 55, 60ralxfr2d 4882 . . . . . 6 (𝜑 → (∀𝑣 ∈ ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))∃𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))∀𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦)) ↔ ∀𝑑 ∈ ℝ+𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))∀𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦))))
62 eqid 2622 . . . . . . . . . . 11 (𝐶 “ (0[,)𝑐)) = (𝐶 “ (0[,)𝑐))
63 oveq2 6658 . . . . . . . . . . . . . 14 (𝑒 = 𝑐 → (0[,)𝑒) = (0[,)𝑐))
6463imaeq2d 5466 . . . . . . . . . . . . 13 (𝑒 = 𝑐 → (𝐶 “ (0[,)𝑒)) = (𝐶 “ (0[,)𝑐)))
6564eqeq2d 2632 . . . . . . . . . . . 12 (𝑒 = 𝑐 → ((𝐶 “ (0[,)𝑐)) = (𝐶 “ (0[,)𝑒)) ↔ (𝐶 “ (0[,)𝑐)) = (𝐶 “ (0[,)𝑐))))
6665rspcev 3309 . . . . . . . . . . 11 ((𝑐 ∈ ℝ+ ∧ (𝐶 “ (0[,)𝑐)) = (𝐶 “ (0[,)𝑐))) → ∃𝑒 ∈ ℝ+ (𝐶 “ (0[,)𝑐)) = (𝐶 “ (0[,)𝑒)))
6762, 66mpan2 707 . . . . . . . . . 10 (𝑐 ∈ ℝ+ → ∃𝑒 ∈ ℝ+ (𝐶 “ (0[,)𝑐)) = (𝐶 “ (0[,)𝑒)))
6867adantl 482 . . . . . . . . 9 ((𝜑𝑐 ∈ ℝ+) → ∃𝑒 ∈ ℝ+ (𝐶 “ (0[,)𝑐)) = (𝐶 “ (0[,)𝑒)))
6932metustel 22355 . . . . . . . . . . 11 (𝐶 ∈ (PsMet‘𝑋) → ((𝐶 “ (0[,)𝑐)) ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎))) ↔ ∃𝑒 ∈ ℝ+ (𝐶 “ (0[,)𝑐)) = (𝐶 “ (0[,)𝑒))))
702, 69syl 17 . . . . . . . . . 10 (𝜑 → ((𝐶 “ (0[,)𝑐)) ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎))) ↔ ∃𝑒 ∈ ℝ+ (𝐶 “ (0[,)𝑐)) = (𝐶 “ (0[,)𝑒))))
7170adantr 481 . . . . . . . . 9 ((𝜑𝑐 ∈ ℝ+) → ((𝐶 “ (0[,)𝑐)) ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎))) ↔ ∃𝑒 ∈ ℝ+ (𝐶 “ (0[,)𝑐)) = (𝐶 “ (0[,)𝑒))))
7268, 71mpbird 247 . . . . . . . 8 ((𝜑𝑐 ∈ ℝ+) → (𝐶 “ (0[,)𝑐)) ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎))))
7319metustel 22355 . . . . . . . . 9 (𝐶 ∈ (PsMet‘𝑋) → (𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎))) ↔ ∃𝑐 ∈ ℝ+ 𝑢 = (𝐶 “ (0[,)𝑐))))
742, 73syl 17 . . . . . . . 8 (𝜑 → (𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎))) ↔ ∃𝑐 ∈ ℝ+ 𝑢 = (𝐶 “ (0[,)𝑐))))
75 simpr 477 . . . . . . . . . . 11 ((𝜑𝑢 = (𝐶 “ (0[,)𝑐))) → 𝑢 = (𝐶 “ (0[,)𝑐)))
7675breqd 4664 . . . . . . . . . 10 ((𝜑𝑢 = (𝐶 “ (0[,)𝑐))) → (𝑥𝑢𝑦𝑥(𝐶 “ (0[,)𝑐))𝑦))
7776imbi1d 331 . . . . . . . . 9 ((𝜑𝑢 = (𝐶 “ (0[,)𝑐))) → ((𝑥𝑢𝑦 → (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦)) ↔ (𝑥(𝐶 “ (0[,)𝑐))𝑦 → (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦))))
78772ralbidv 2989 . . . . . . . 8 ((𝜑𝑢 = (𝐶 “ (0[,)𝑐))) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦)) ↔ ∀𝑥𝑋𝑦𝑋 (𝑥(𝐶 “ (0[,)𝑐))𝑦 → (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦))))
7972, 74, 78rexxfr2d 4883 . . . . . . 7 (𝜑 → (∃𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))∀𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦)) ↔ ∃𝑐 ∈ ℝ+𝑥𝑋𝑦𝑋 (𝑥(𝐶 “ (0[,)𝑐))𝑦 → (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦))))
8079ralbidv 2986 . . . . . 6 (𝜑 → (∀𝑑 ∈ ℝ+𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))∀𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦)) ↔ ∀𝑑 ∈ ℝ+𝑐 ∈ ℝ+𝑥𝑋𝑦𝑋 (𝑥(𝐶 “ (0[,)𝑐))𝑦 → (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦))))
8161, 80bitrd 268 . . . . 5 (𝜑 → (∀𝑣 ∈ ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))∃𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))∀𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦)) ↔ ∀𝑑 ∈ ℝ+𝑐 ∈ ℝ+𝑥𝑋𝑦𝑋 (𝑥(𝐶 “ (0[,)𝑐))𝑦 → (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦))))
8281adantr 481 . . . 4 ((𝜑𝐹:𝑋𝑌) → (∀𝑣 ∈ ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))∃𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))∀𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦)) ↔ ∀𝑑 ∈ ℝ+𝑐 ∈ ℝ+𝑥𝑋𝑦𝑋 (𝑥(𝐶 “ (0[,)𝑐))𝑦 → (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦))))
832ad4antr 768 . . . . . . . . 9 (((((𝜑𝐹:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 𝐶 ∈ (PsMet‘𝑋))
84 simplr 792 . . . . . . . . 9 (((((𝜑𝐹:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 𝑐 ∈ ℝ+)
85 simprr 796 . . . . . . . . 9 (((((𝜑𝐹:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 𝑦𝑋)
86 simprl 794 . . . . . . . . 9 (((((𝜑𝐹:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 𝑥𝑋)
87 elbl4 22368 . . . . . . . . . 10 (((𝐶 ∈ (PsMet‘𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑦𝑋𝑥𝑋)) → (𝑥 ∈ (𝑦(ball‘𝐶)𝑐) ↔ 𝑥(𝐶 “ (0[,)𝑐))𝑦))
88 rpxr 11840 . . . . . . . . . . 11 (𝑐 ∈ ℝ+𝑐 ∈ ℝ*)
89 elbl3ps 22196 . . . . . . . . . . 11 (((𝐶 ∈ (PsMet‘𝑋) ∧ 𝑐 ∈ ℝ*) ∧ (𝑦𝑋𝑥𝑋)) → (𝑥 ∈ (𝑦(ball‘𝐶)𝑐) ↔ (𝑥𝐶𝑦) < 𝑐))
9088, 89sylanl2 683 . . . . . . . . . 10 (((𝐶 ∈ (PsMet‘𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑦𝑋𝑥𝑋)) → (𝑥 ∈ (𝑦(ball‘𝐶)𝑐) ↔ (𝑥𝐶𝑦) < 𝑐))
9187, 90bitr3d 270 . . . . . . . . 9 (((𝐶 ∈ (PsMet‘𝑋) ∧ 𝑐 ∈ ℝ+) ∧ (𝑦𝑋𝑥𝑋)) → (𝑥(𝐶 “ (0[,)𝑐))𝑦 ↔ (𝑥𝐶𝑦) < 𝑐))
9283, 84, 85, 86, 91syl22anc 1327 . . . . . . . 8 (((((𝜑𝐹:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(𝐶 “ (0[,)𝑐))𝑦 ↔ (𝑥𝐶𝑦) < 𝑐))
937ad4antr 768 . . . . . . . . 9 (((((𝜑𝐹:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 𝐷 ∈ (PsMet‘𝑌))
94 simpllr 799 . . . . . . . . 9 (((((𝜑𝐹:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 𝑑 ∈ ℝ+)
95 simp-4r 807 . . . . . . . . . 10 (((((𝜑𝐹:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → 𝐹:𝑋𝑌)
9695, 85ffvelrnd 6360 . . . . . . . . 9 (((((𝜑𝐹:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → (𝐹𝑦) ∈ 𝑌)
9795, 86ffvelrnd 6360 . . . . . . . . 9 (((((𝜑𝐹:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → (𝐹𝑥) ∈ 𝑌)
98 elbl4 22368 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑌) ∧ 𝑑 ∈ ℝ+) ∧ ((𝐹𝑦) ∈ 𝑌 ∧ (𝐹𝑥) ∈ 𝑌)) → ((𝐹𝑥) ∈ ((𝐹𝑦)(ball‘𝐷)𝑑) ↔ (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦)))
99 rpxr 11840 . . . . . . . . . . 11 (𝑑 ∈ ℝ+𝑑 ∈ ℝ*)
100 elbl3ps 22196 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑌) ∧ 𝑑 ∈ ℝ*) ∧ ((𝐹𝑦) ∈ 𝑌 ∧ (𝐹𝑥) ∈ 𝑌)) → ((𝐹𝑥) ∈ ((𝐹𝑦)(ball‘𝐷)𝑑) ↔ ((𝐹𝑥)𝐷(𝐹𝑦)) < 𝑑))
10199, 100sylanl2 683 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑌) ∧ 𝑑 ∈ ℝ+) ∧ ((𝐹𝑦) ∈ 𝑌 ∧ (𝐹𝑥) ∈ 𝑌)) → ((𝐹𝑥) ∈ ((𝐹𝑦)(ball‘𝐷)𝑑) ↔ ((𝐹𝑥)𝐷(𝐹𝑦)) < 𝑑))
10298, 101bitr3d 270 . . . . . . . . 9 (((𝐷 ∈ (PsMet‘𝑌) ∧ 𝑑 ∈ ℝ+) ∧ ((𝐹𝑦) ∈ 𝑌 ∧ (𝐹𝑥) ∈ 𝑌)) → ((𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦) ↔ ((𝐹𝑥)𝐷(𝐹𝑦)) < 𝑑))
10393, 94, 96, 97, 102syl22anc 1327 . . . . . . . 8 (((((𝜑𝐹:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦) ↔ ((𝐹𝑥)𝐷(𝐹𝑦)) < 𝑑))
10492, 103imbi12d 334 . . . . . . 7 (((((𝜑𝐹:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥(𝐶 “ (0[,)𝑐))𝑦 → (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦)) ↔ ((𝑥𝐶𝑦) < 𝑐 → ((𝐹𝑥)𝐷(𝐹𝑦)) < 𝑑)))
1051042ralbidva 2988 . . . . . 6 ((((𝜑𝐹:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) ∧ 𝑐 ∈ ℝ+) → (∀𝑥𝑋𝑦𝑋 (𝑥(𝐶 “ (0[,)𝑐))𝑦 → (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦)) ↔ ∀𝑥𝑋𝑦𝑋 ((𝑥𝐶𝑦) < 𝑐 → ((𝐹𝑥)𝐷(𝐹𝑦)) < 𝑑)))
106105rexbidva 3049 . . . . 5 (((𝜑𝐹:𝑋𝑌) ∧ 𝑑 ∈ ℝ+) → (∃𝑐 ∈ ℝ+𝑥𝑋𝑦𝑋 (𝑥(𝐶 “ (0[,)𝑐))𝑦 → (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦)) ↔ ∃𝑐 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐶𝑦) < 𝑐 → ((𝐹𝑥)𝐷(𝐹𝑦)) < 𝑑)))
107106ralbidva 2985 . . . 4 ((𝜑𝐹:𝑋𝑌) → (∀𝑑 ∈ ℝ+𝑐 ∈ ℝ+𝑥𝑋𝑦𝑋 (𝑥(𝐶 “ (0[,)𝑐))𝑦 → (𝐹𝑥)(𝐷 “ (0[,)𝑑))(𝐹𝑦)) ↔ ∀𝑑 ∈ ℝ+𝑐 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐶𝑦) < 𝑐 → ((𝐹𝑥)𝐷(𝐹𝑦)) < 𝑑)))
10882, 107bitrd 268 . . 3 ((𝜑𝐹:𝑋𝑌) → (∀𝑣 ∈ ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))∃𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))∀𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦)) ↔ ∀𝑑 ∈ ℝ+𝑐 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐶𝑦) < 𝑐 → ((𝐹𝑥)𝐷(𝐹𝑦)) < 𝑑)))
109108pm5.32da 673 . 2 (𝜑 → ((𝐹:𝑋𝑌 ∧ ∀𝑣 ∈ ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))∃𝑢 ∈ ran (𝑎 ∈ ℝ+ ↦ (𝐶 “ (0[,)𝑎)))∀𝑥𝑋𝑦𝑋 (𝑥𝑢𝑦 → (𝐹𝑥)𝑣(𝐹𝑦))) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑑 ∈ ℝ+𝑐 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐶𝑦) < 𝑐 → ((𝐹𝑥)𝐷(𝐹𝑦)) < 𝑑))))
11042, 109bitrd 268 1 (𝜑 → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑑 ∈ ℝ+𝑐 ∈ ℝ+𝑥𝑋𝑦𝑋 ((𝑥𝐶𝑦) < 𝑐 → ((𝐹𝑥)𝐷(𝐹𝑦)) < 𝑑))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  c0 3915   class class class wbr 4653  cmpt 4729   × cxp 5112  ccnv 5113  ran crn 5115  cima 5117  wf 5884  cfv 5888  (class class class)co 6650  0cc0 9936  *cxr 10073   < clt 10074  +crp 11832  [,)cico 12177  PsMetcpsmet 19730  ballcbl 19733  fBascfbas 19734  filGencfg 19735  metUnifcmetu 19737  UnifOncust 22003   Cnucucn 22079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-psmet 19738  df-bl 19741  df-fbas 19743  df-fg 19744  df-metu 19745  df-fil 21650  df-ust 22004  df-ucn 22080
This theorem is referenced by:  qqhucn  30036  heicant  33444
  Copyright terms: Public domain W3C validator