| Step | Hyp | Ref
| Expression |
| 1 | | simp-4r 807 |
. . . 4
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → 𝐷 ∈ (PsMet‘𝑋)) |
| 2 | | simplr 792 |
. . . . . 6
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → 𝑎 ∈ ℝ+) |
| 3 | 2 | rphalfcld 11884 |
. . . . 5
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → (𝑎 / 2) ∈
ℝ+) |
| 4 | | eqidd 2623 |
. . . . 5
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → (◡𝐷 “ (0[,)(𝑎 / 2))) = (◡𝐷 “ (0[,)(𝑎 / 2)))) |
| 5 | | oveq2 6658 |
. . . . . . . 8
⊢ (𝑏 = (𝑎 / 2) → (0[,)𝑏) = (0[,)(𝑎 / 2))) |
| 6 | 5 | imaeq2d 5466 |
. . . . . . 7
⊢ (𝑏 = (𝑎 / 2) → (◡𝐷 “ (0[,)𝑏)) = (◡𝐷 “ (0[,)(𝑎 / 2)))) |
| 7 | 6 | eqeq2d 2632 |
. . . . . 6
⊢ (𝑏 = (𝑎 / 2) → ((◡𝐷 “ (0[,)(𝑎 / 2))) = (◡𝐷 “ (0[,)𝑏)) ↔ (◡𝐷 “ (0[,)(𝑎 / 2))) = (◡𝐷 “ (0[,)(𝑎 / 2))))) |
| 8 | 7 | rspcev 3309 |
. . . . 5
⊢ (((𝑎 / 2) ∈ ℝ+
∧ (◡𝐷 “ (0[,)(𝑎 / 2))) = (◡𝐷 “ (0[,)(𝑎 / 2)))) → ∃𝑏 ∈ ℝ+ (◡𝐷 “ (0[,)(𝑎 / 2))) = (◡𝐷 “ (0[,)𝑏))) |
| 9 | 3, 4, 8 | syl2anc 693 |
. . . 4
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → ∃𝑏 ∈ ℝ+ (◡𝐷 “ (0[,)(𝑎 / 2))) = (◡𝐷 “ (0[,)𝑏))) |
| 10 | | metust.1 |
. . . . . . 7
⊢ 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) |
| 11 | | oveq2 6658 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑏 → (0[,)𝑎) = (0[,)𝑏)) |
| 12 | 11 | imaeq2d 5466 |
. . . . . . . . 9
⊢ (𝑎 = 𝑏 → (◡𝐷 “ (0[,)𝑎)) = (◡𝐷 “ (0[,)𝑏))) |
| 13 | 12 | cbvmptv 4750 |
. . . . . . . 8
⊢ (𝑎 ∈ ℝ+
↦ (◡𝐷 “ (0[,)𝑎))) = (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏))) |
| 14 | 13 | rneqi 5352 |
. . . . . . 7
⊢ ran
(𝑎 ∈
ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) = ran (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏))) |
| 15 | 10, 14 | eqtri 2644 |
. . . . . 6
⊢ 𝐹 = ran (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏))) |
| 16 | 15 | metustel 22355 |
. . . . 5
⊢ (𝐷 ∈ (PsMet‘𝑋) → ((◡𝐷 “ (0[,)(𝑎 / 2))) ∈ 𝐹 ↔ ∃𝑏 ∈ ℝ+ (◡𝐷 “ (0[,)(𝑎 / 2))) = (◡𝐷 “ (0[,)𝑏)))) |
| 17 | 16 | biimpar 502 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ ∃𝑏 ∈ ℝ+
(◡𝐷 “ (0[,)(𝑎 / 2))) = (◡𝐷 “ (0[,)𝑏))) → (◡𝐷 “ (0[,)(𝑎 / 2))) ∈ 𝐹) |
| 18 | 1, 9, 17 | syl2anc 693 |
. . 3
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → (◡𝐷 “ (0[,)(𝑎 / 2))) ∈ 𝐹) |
| 19 | | relco 5633 |
. . . . 5
⊢ Rel
((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2)))) |
| 20 | 19 | a1i 11 |
. . . 4
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → Rel ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) |
| 21 | | cossxp 5658 |
. . . . . . . . . 10
⊢ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (dom (◡𝐷 “ (0[,)(𝑎 / 2))) × ran (◡𝐷 “ (0[,)(𝑎 / 2)))) |
| 22 | | cnvimass 5485 |
. . . . . . . . . . . . . 14
⊢ (◡𝐷 “ (0[,)(𝑎 / 2))) ⊆ dom 𝐷 |
| 23 | | psmetf 22111 |
. . . . . . . . . . . . . . 15
⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
| 24 | | fdm 6051 |
. . . . . . . . . . . . . . 15
⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ* → dom
𝐷 = (𝑋 × 𝑋)) |
| 25 | 23, 24 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝐷 ∈ (PsMet‘𝑋) → dom 𝐷 = (𝑋 × 𝑋)) |
| 26 | 22, 25 | syl5sseq 3653 |
. . . . . . . . . . . . 13
⊢ (𝐷 ∈ (PsMet‘𝑋) → (◡𝐷 “ (0[,)(𝑎 / 2))) ⊆ (𝑋 × 𝑋)) |
| 27 | | dmss 5323 |
. . . . . . . . . . . . . 14
⊢ ((◡𝐷 “ (0[,)(𝑎 / 2))) ⊆ (𝑋 × 𝑋) → dom (◡𝐷 “ (0[,)(𝑎 / 2))) ⊆ dom (𝑋 × 𝑋)) |
| 28 | | rnss 5354 |
. . . . . . . . . . . . . 14
⊢ ((◡𝐷 “ (0[,)(𝑎 / 2))) ⊆ (𝑋 × 𝑋) → ran (◡𝐷 “ (0[,)(𝑎 / 2))) ⊆ ran (𝑋 × 𝑋)) |
| 29 | | xpss12 5225 |
. . . . . . . . . . . . . 14
⊢ ((dom
(◡𝐷 “ (0[,)(𝑎 / 2))) ⊆ dom (𝑋 × 𝑋) ∧ ran (◡𝐷 “ (0[,)(𝑎 / 2))) ⊆ ran (𝑋 × 𝑋)) → (dom (◡𝐷 “ (0[,)(𝑎 / 2))) × ran (◡𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (dom (𝑋 × 𝑋) × ran (𝑋 × 𝑋))) |
| 30 | 27, 28, 29 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((◡𝐷 “ (0[,)(𝑎 / 2))) ⊆ (𝑋 × 𝑋) → (dom (◡𝐷 “ (0[,)(𝑎 / 2))) × ran (◡𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (dom (𝑋 × 𝑋) × ran (𝑋 × 𝑋))) |
| 31 | 26, 30 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ (PsMet‘𝑋) → (dom (◡𝐷 “ (0[,)(𝑎 / 2))) × ran (◡𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (dom (𝑋 × 𝑋) × ran (𝑋 × 𝑋))) |
| 32 | 31 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (dom (◡𝐷 “ (0[,)(𝑎 / 2))) × ran (◡𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (dom (𝑋 × 𝑋) × ran (𝑋 × 𝑋))) |
| 33 | | dmxp 5344 |
. . . . . . . . . . . . 13
⊢ (𝑋 ≠ ∅ → dom (𝑋 × 𝑋) = 𝑋) |
| 34 | | rnxp 5564 |
. . . . . . . . . . . . 13
⊢ (𝑋 ≠ ∅ → ran (𝑋 × 𝑋) = 𝑋) |
| 35 | 33, 34 | xpeq12d 5140 |
. . . . . . . . . . . 12
⊢ (𝑋 ≠ ∅ → (dom (𝑋 × 𝑋) × ran (𝑋 × 𝑋)) = (𝑋 × 𝑋)) |
| 36 | 35 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (dom (𝑋 × 𝑋) × ran (𝑋 × 𝑋)) = (𝑋 × 𝑋)) |
| 37 | 32, 36 | sseqtrd 3641 |
. . . . . . . . . 10
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (dom (◡𝐷 “ (0[,)(𝑎 / 2))) × ran (◡𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (𝑋 × 𝑋)) |
| 38 | 21, 37 | syl5ss 3614 |
. . . . . . . . 9
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (𝑋 × 𝑋)) |
| 39 | 38 | ad3antrrr 766 |
. . . . . . . 8
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2)))) ⊆ (𝑋 × 𝑋)) |
| 40 | 39 | sselda 3603 |
. . . . . . 7
⊢
((((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) → 〈𝑝, 𝑞〉 ∈ (𝑋 × 𝑋)) |
| 41 | | opelxp 5146 |
. . . . . . 7
⊢
(〈𝑝, 𝑞〉 ∈ (𝑋 × 𝑋) ↔ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) |
| 42 | 40, 41 | sylib 208 |
. . . . . 6
⊢
((((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) → (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) |
| 43 | | simpll 790 |
. . . . . . 7
⊢
(((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) → ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎)))) |
| 44 | | simprl 794 |
. . . . . . 7
⊢
(((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) → 𝑝 ∈ 𝑋) |
| 45 | | simprr 796 |
. . . . . . 7
⊢
(((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) → 𝑞 ∈ 𝑋) |
| 46 | | simplr 792 |
. . . . . . 7
⊢
(((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) → 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) |
| 47 | | simplll 798 |
. . . . . . . . . . . . . . 15
⊢
(((((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) |
| 48 | 47 | simp1d 1073 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎)))) |
| 49 | 48, 1 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝐷 ∈ (PsMet‘𝑋)) |
| 50 | 48, 2 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑎 ∈ ℝ+) |
| 51 | 49, 50 | jca 554 |
. . . . . . . . . . . 12
⊢
(((((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈
ℝ+)) |
| 52 | 47 | simp2d 1074 |
. . . . . . . . . . . 12
⊢
(((((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝 ∈ 𝑋) |
| 53 | 47 | simp3d 1075 |
. . . . . . . . . . . 12
⊢
(((((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑞 ∈ 𝑋) |
| 54 | 51, 52, 53 | 3jca 1242 |
. . . . . . . . . . 11
⊢
(((((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) |
| 55 | | simplr 792 |
. . . . . . . . . . 11
⊢
(((((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑟 ∈ 𝑋) |
| 56 | | simprl 794 |
. . . . . . . . . . 11
⊢
(((((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟) |
| 57 | | simprr 796 |
. . . . . . . . . . 11
⊢
(((((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞) |
| 58 | | simpll 790 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) |
| 59 | 58 | simp1d 1073 |
. . . . . . . . . . . . . 14
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷 ∈ (PsMet‘𝑋) ∧ 𝑎 ∈
ℝ+)) |
| 60 | 59 | simpld 475 |
. . . . . . . . . . . . 13
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝐷 ∈ (PsMet‘𝑋)) |
| 61 | | ffun 6048 |
. . . . . . . . . . . . . 14
⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ* → Fun
𝐷) |
| 62 | 23, 61 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝐷 ∈ (PsMet‘𝑋) → Fun 𝐷) |
| 63 | 60, 62 | syl 17 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → Fun 𝐷) |
| 64 | 58 | simp2d 1074 |
. . . . . . . . . . . . . 14
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝 ∈ 𝑋) |
| 65 | 58 | simp3d 1075 |
. . . . . . . . . . . . . 14
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑞 ∈ 𝑋) |
| 66 | 64, 65, 41 | sylanbrc 698 |
. . . . . . . . . . . . 13
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 〈𝑝, 𝑞〉 ∈ (𝑋 × 𝑋)) |
| 67 | 60, 25 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → dom 𝐷 = (𝑋 × 𝑋)) |
| 68 | 66, 67 | eleqtrrd 2704 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 〈𝑝, 𝑞〉 ∈ dom 𝐷) |
| 69 | | 0xr 10086 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℝ* |
| 70 | 69 | a1i 11 |
. . . . . . . . . . . . 13
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 0 ∈
ℝ*) |
| 71 | 59 | simprd 479 |
. . . . . . . . . . . . . 14
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑎 ∈ ℝ+) |
| 72 | 71 | rpxrd 11873 |
. . . . . . . . . . . . 13
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑎 ∈ ℝ*) |
| 73 | 60, 23 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
| 74 | 73, 66 | ffvelrnd 6360 |
. . . . . . . . . . . . 13
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷‘〈𝑝, 𝑞〉) ∈
ℝ*) |
| 75 | | psmetge0 22117 |
. . . . . . . . . . . . . . 15
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) → 0 ≤ (𝑝𝐷𝑞)) |
| 76 | 60, 64, 65, 75 | syl3anc 1326 |
. . . . . . . . . . . . . 14
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 0 ≤ (𝑝𝐷𝑞)) |
| 77 | | df-ov 6653 |
. . . . . . . . . . . . . 14
⊢ (𝑝𝐷𝑞) = (𝐷‘〈𝑝, 𝑞〉) |
| 78 | 76, 77 | syl6breq 4694 |
. . . . . . . . . . . . 13
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 0 ≤ (𝐷‘〈𝑝, 𝑞〉)) |
| 79 | 77, 74 | syl5eqel 2705 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐷𝑞) ∈
ℝ*) |
| 80 | | 0red 10041 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 0 ∈ ℝ) |
| 81 | 71 | rpred 11872 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑎 ∈ ℝ) |
| 82 | 81 | rehalfcld 11279 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑎 / 2) ∈ ℝ) |
| 83 | 82 | rexrd 10089 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑎 / 2) ∈
ℝ*) |
| 84 | | df-ov 6653 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑝𝐷𝑟) = (𝐷‘〈𝑝, 𝑟〉) |
| 85 | | simplr 792 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑟 ∈ 𝑋) |
| 86 | | opelxp 5146 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(〈𝑝, 𝑟〉 ∈ (𝑋 × 𝑋) ↔ (𝑝 ∈ 𝑋 ∧ 𝑟 ∈ 𝑋)) |
| 87 | 64, 85, 86 | sylanbrc 698 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 〈𝑝, 𝑟〉 ∈ (𝑋 × 𝑋)) |
| 88 | 87, 67 | eleqtrrd 2704 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 〈𝑝, 𝑟〉 ∈ dom 𝐷) |
| 89 | | simprl 794 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟) |
| 90 | | df-br 4654 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ↔ 〈𝑝, 𝑟〉 ∈ (◡𝐷 “ (0[,)(𝑎 / 2)))) |
| 91 | 89, 90 | sylib 208 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 〈𝑝, 𝑟〉 ∈ (◡𝐷 “ (0[,)(𝑎 / 2)))) |
| 92 | | fvimacnv 6332 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((Fun
𝐷 ∧ 〈𝑝, 𝑟〉 ∈ dom 𝐷) → ((𝐷‘〈𝑝, 𝑟〉) ∈ (0[,)(𝑎 / 2)) ↔ 〈𝑝, 𝑟〉 ∈ (◡𝐷 “ (0[,)(𝑎 / 2))))) |
| 93 | 92 | biimpar 502 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((Fun
𝐷 ∧ 〈𝑝, 𝑟〉 ∈ dom 𝐷) ∧ 〈𝑝, 𝑟〉 ∈ (◡𝐷 “ (0[,)(𝑎 / 2)))) → (𝐷‘〈𝑝, 𝑟〉) ∈ (0[,)(𝑎 / 2))) |
| 94 | 63, 88, 91, 93 | syl21anc 1325 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷‘〈𝑝, 𝑟〉) ∈ (0[,)(𝑎 / 2))) |
| 95 | 84, 94 | syl5eqel 2705 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐷𝑟) ∈ (0[,)(𝑎 / 2))) |
| 96 | | elico2 12237 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((0
∈ ℝ ∧ (𝑎 /
2) ∈ ℝ*) → ((𝑝𝐷𝑟) ∈ (0[,)(𝑎 / 2)) ↔ ((𝑝𝐷𝑟) ∈ ℝ ∧ 0 ≤ (𝑝𝐷𝑟) ∧ (𝑝𝐷𝑟) < (𝑎 / 2)))) |
| 97 | 96 | biimpa 501 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((0
∈ ℝ ∧ (𝑎 /
2) ∈ ℝ*) ∧ (𝑝𝐷𝑟) ∈ (0[,)(𝑎 / 2))) → ((𝑝𝐷𝑟) ∈ ℝ ∧ 0 ≤ (𝑝𝐷𝑟) ∧ (𝑝𝐷𝑟) < (𝑎 / 2))) |
| 98 | 97 | simp1d 1073 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((0
∈ ℝ ∧ (𝑎 /
2) ∈ ℝ*) ∧ (𝑝𝐷𝑟) ∈ (0[,)(𝑎 / 2))) → (𝑝𝐷𝑟) ∈ ℝ) |
| 99 | 80, 83, 95, 98 | syl21anc 1325 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐷𝑟) ∈ ℝ) |
| 100 | | df-ov 6653 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑟𝐷𝑞) = (𝐷‘〈𝑟, 𝑞〉) |
| 101 | | opelxp 5146 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(〈𝑟, 𝑞〉 ∈ (𝑋 × 𝑋) ↔ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) |
| 102 | 85, 65, 101 | sylanbrc 698 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 〈𝑟, 𝑞〉 ∈ (𝑋 × 𝑋)) |
| 103 | 102, 67 | eleqtrrd 2704 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 〈𝑟, 𝑞〉 ∈ dom 𝐷) |
| 104 | | simprr 796 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞) |
| 105 | | df-br 4654 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞 ↔ 〈𝑟, 𝑞〉 ∈ (◡𝐷 “ (0[,)(𝑎 / 2)))) |
| 106 | 104, 105 | sylib 208 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 〈𝑟, 𝑞〉 ∈ (◡𝐷 “ (0[,)(𝑎 / 2)))) |
| 107 | | fvimacnv 6332 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((Fun
𝐷 ∧ 〈𝑟, 𝑞〉 ∈ dom 𝐷) → ((𝐷‘〈𝑟, 𝑞〉) ∈ (0[,)(𝑎 / 2)) ↔ 〈𝑟, 𝑞〉 ∈ (◡𝐷 “ (0[,)(𝑎 / 2))))) |
| 108 | 107 | biimpar 502 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((Fun
𝐷 ∧ 〈𝑟, 𝑞〉 ∈ dom 𝐷) ∧ 〈𝑟, 𝑞〉 ∈ (◡𝐷 “ (0[,)(𝑎 / 2)))) → (𝐷‘〈𝑟, 𝑞〉) ∈ (0[,)(𝑎 / 2))) |
| 109 | 63, 103, 106, 108 | syl21anc 1325 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷‘〈𝑟, 𝑞〉) ∈ (0[,)(𝑎 / 2))) |
| 110 | 100, 109 | syl5eqel 2705 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑟𝐷𝑞) ∈ (0[,)(𝑎 / 2))) |
| 111 | | elico2 12237 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((0
∈ ℝ ∧ (𝑎 /
2) ∈ ℝ*) → ((𝑟𝐷𝑞) ∈ (0[,)(𝑎 / 2)) ↔ ((𝑟𝐷𝑞) ∈ ℝ ∧ 0 ≤ (𝑟𝐷𝑞) ∧ (𝑟𝐷𝑞) < (𝑎 / 2)))) |
| 112 | 111 | biimpa 501 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((0
∈ ℝ ∧ (𝑎 /
2) ∈ ℝ*) ∧ (𝑟𝐷𝑞) ∈ (0[,)(𝑎 / 2))) → ((𝑟𝐷𝑞) ∈ ℝ ∧ 0 ≤ (𝑟𝐷𝑞) ∧ (𝑟𝐷𝑞) < (𝑎 / 2))) |
| 113 | 112 | simp1d 1073 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((0
∈ ℝ ∧ (𝑎 /
2) ∈ ℝ*) ∧ (𝑟𝐷𝑞) ∈ (0[,)(𝑎 / 2))) → (𝑟𝐷𝑞) ∈ ℝ) |
| 114 | 80, 83, 110, 113 | syl21anc 1325 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑟𝐷𝑞) ∈ ℝ) |
| 115 | | rexadd 12063 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑝𝐷𝑟) ∈ ℝ ∧ (𝑟𝐷𝑞) ∈ ℝ) → ((𝑝𝐷𝑟) +𝑒 (𝑟𝐷𝑞)) = ((𝑝𝐷𝑟) + (𝑟𝐷𝑞))) |
| 116 | 99, 114, 115 | syl2anc 693 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝑝𝐷𝑟) +𝑒 (𝑟𝐷𝑞)) = ((𝑝𝐷𝑟) + (𝑟𝐷𝑞))) |
| 117 | 99, 114 | readdcld 10069 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝑝𝐷𝑟) + (𝑟𝐷𝑞)) ∈ ℝ) |
| 118 | 116, 117 | eqeltrd 2701 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝑝𝐷𝑟) +𝑒 (𝑟𝐷𝑞)) ∈ ℝ) |
| 119 | 118 | rexrd 10089 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝑝𝐷𝑟) +𝑒 (𝑟𝐷𝑞)) ∈
ℝ*) |
| 120 | | psmettri 22116 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑋)) → (𝑝𝐷𝑞) ≤ ((𝑝𝐷𝑟) +𝑒 (𝑟𝐷𝑞))) |
| 121 | 60, 64, 65, 85, 120 | syl13anc 1328 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐷𝑞) ≤ ((𝑝𝐷𝑟) +𝑒 (𝑟𝐷𝑞))) |
| 122 | 97 | simp3d 1075 |
. . . . . . . . . . . . . . . . . 18
⊢ (((0
∈ ℝ ∧ (𝑎 /
2) ∈ ℝ*) ∧ (𝑝𝐷𝑟) ∈ (0[,)(𝑎 / 2))) → (𝑝𝐷𝑟) < (𝑎 / 2)) |
| 123 | 80, 83, 95, 122 | syl21anc 1325 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐷𝑟) < (𝑎 / 2)) |
| 124 | 112 | simp3d 1075 |
. . . . . . . . . . . . . . . . . 18
⊢ (((0
∈ ℝ ∧ (𝑎 /
2) ∈ ℝ*) ∧ (𝑟𝐷𝑞) ∈ (0[,)(𝑎 / 2))) → (𝑟𝐷𝑞) < (𝑎 / 2)) |
| 125 | 80, 83, 110, 124 | syl21anc 1325 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑟𝐷𝑞) < (𝑎 / 2)) |
| 126 | 99, 114, 81, 123, 125 | lt2halvesd 11280 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝑝𝐷𝑟) + (𝑟𝐷𝑞)) < 𝑎) |
| 127 | 116, 126 | eqbrtrd 4675 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → ((𝑝𝐷𝑟) +𝑒 (𝑟𝐷𝑞)) < 𝑎) |
| 128 | 79, 119, 72, 121, 127 | xrlelttrd 11991 |
. . . . . . . . . . . . . 14
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐷𝑞) < 𝑎) |
| 129 | 77, 128 | syl5eqbrr 4689 |
. . . . . . . . . . . . 13
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷‘〈𝑝, 𝑞〉) < 𝑎) |
| 130 | | elico1 12218 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ ℝ* ∧ 𝑎 ∈ ℝ*) → ((𝐷‘〈𝑝, 𝑞〉) ∈ (0[,)𝑎) ↔ ((𝐷‘〈𝑝, 𝑞〉) ∈ ℝ* ∧ 0
≤ (𝐷‘〈𝑝, 𝑞〉) ∧ (𝐷‘〈𝑝, 𝑞〉) < 𝑎))) |
| 131 | 130 | biimpar 502 |
. . . . . . . . . . . . 13
⊢ (((0
∈ ℝ* ∧ 𝑎 ∈ ℝ*) ∧ ((𝐷‘〈𝑝, 𝑞〉) ∈ ℝ* ∧ 0
≤ (𝐷‘〈𝑝, 𝑞〉) ∧ (𝐷‘〈𝑝, 𝑞〉) < 𝑎)) → (𝐷‘〈𝑝, 𝑞〉) ∈ (0[,)𝑎)) |
| 132 | 70, 72, 74, 78, 129, 131 | syl23anc 1333 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝐷‘〈𝑝, 𝑞〉) ∈ (0[,)𝑎)) |
| 133 | | fvimacnv 6332 |
. . . . . . . . . . . . . 14
⊢ ((Fun
𝐷 ∧ 〈𝑝, 𝑞〉 ∈ dom 𝐷) → ((𝐷‘〈𝑝, 𝑞〉) ∈ (0[,)𝑎) ↔ 〈𝑝, 𝑞〉 ∈ (◡𝐷 “ (0[,)𝑎)))) |
| 134 | 133 | biimpa 501 |
. . . . . . . . . . . . 13
⊢ (((Fun
𝐷 ∧ 〈𝑝, 𝑞〉 ∈ dom 𝐷) ∧ (𝐷‘〈𝑝, 𝑞〉) ∈ (0[,)𝑎)) → 〈𝑝, 𝑞〉 ∈ (◡𝐷 “ (0[,)𝑎))) |
| 135 | | df-br 4654 |
. . . . . . . . . . . . 13
⊢ (𝑝(◡𝐷 “ (0[,)𝑎))𝑞 ↔ 〈𝑝, 𝑞〉 ∈ (◡𝐷 “ (0[,)𝑎))) |
| 136 | 134, 135 | sylibr 224 |
. . . . . . . . . . . 12
⊢ (((Fun
𝐷 ∧ 〈𝑝, 𝑞〉 ∈ dom 𝐷) ∧ (𝐷‘〈𝑝, 𝑞〉) ∈ (0[,)𝑎)) → 𝑝(◡𝐷 “ (0[,)𝑎))𝑞) |
| 137 | 63, 68, 132, 136 | syl21anc 1325 |
. . . . . . . . . . 11
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝑎 ∈ ℝ+)
∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝(◡𝐷 “ (0[,)𝑎))𝑞) |
| 138 | 54, 55, 56, 57, 137 | syl22anc 1327 |
. . . . . . . . . 10
⊢
(((((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝(◡𝐷 “ (0[,)𝑎))𝑞) |
| 139 | 48 | simprd 479 |
. . . . . . . . . . 11
⊢
(((((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝐴 = (◡𝐷 “ (0[,)𝑎))) |
| 140 | 139 | breqd 4664 |
. . . . . . . . . 10
⊢
(((((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → (𝑝𝐴𝑞 ↔ 𝑝(◡𝐷 “ (0[,)𝑎))𝑞)) |
| 141 | 138, 140 | mpbird 247 |
. . . . . . . . 9
⊢
(((((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ 𝑟 ∈ 𝑋) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑝𝐴𝑞) |
| 142 | | simpr 477 |
. . . . . . . . . . . . 13
⊢
(((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) → 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) |
| 143 | | df-br 4654 |
. . . . . . . . . . . . 13
⊢ (𝑝((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))𝑞 ↔ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) |
| 144 | 142, 143 | sylibr 224 |
. . . . . . . . . . . 12
⊢
(((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) → 𝑝((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))𝑞) |
| 145 | | vex 3203 |
. . . . . . . . . . . . 13
⊢ 𝑝 ∈ V |
| 146 | | vex 3203 |
. . . . . . . . . . . . 13
⊢ 𝑞 ∈ V |
| 147 | 145, 146 | brco 5292 |
. . . . . . . . . . . 12
⊢ (𝑝((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))𝑞 ↔ ∃𝑟(𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) |
| 148 | 144, 147 | sylib 208 |
. . . . . . . . . . 11
⊢
(((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) → ∃𝑟(𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) |
| 149 | 26 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (◡𝐷 “ (0[,)(𝑎 / 2))) ⊆ (𝑋 × 𝑋)) |
| 150 | 149, 28 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ran (◡𝐷 “ (0[,)(𝑎 / 2))) ⊆ ran (𝑋 × 𝑋)) |
| 151 | 34 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ran (𝑋 × 𝑋) = 𝑋) |
| 152 | 150, 151 | sseqtrd 3641 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ran (◡𝐷 “ (0[,)(𝑎 / 2))) ⊆ 𝑋) |
| 153 | 152 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟) → ran (◡𝐷 “ (0[,)(𝑎 / 2))) ⊆ 𝑋) |
| 154 | | vex 3203 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑟 ∈ V |
| 155 | 145, 154 | brelrn 5356 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 → 𝑟 ∈ ran (◡𝐷 “ (0[,)(𝑎 / 2)))) |
| 156 | 155 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟) → 𝑟 ∈ ran (◡𝐷 “ (0[,)(𝑎 / 2)))) |
| 157 | 153, 156 | sseldd 3604 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟) → 𝑟 ∈ 𝑋) |
| 158 | 157 | adantrr 753 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) → 𝑟 ∈ 𝑋) |
| 159 | 158 | ex 450 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞) → 𝑟 ∈ 𝑋)) |
| 160 | 159 | ancrd 577 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞) → (𝑟 ∈ 𝑋 ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)))) |
| 161 | 160 | eximdv 1846 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (∃𝑟(𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞) → ∃𝑟(𝑟 ∈ 𝑋 ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)))) |
| 162 | 161 | ad3antrrr 766 |
. . . . . . . . . . . . 13
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → (∃𝑟(𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞) → ∃𝑟(𝑟 ∈ 𝑋 ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)))) |
| 163 | 162 | 3ad2ant1 1082 |
. . . . . . . . . . . 12
⊢
((((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) → (∃𝑟(𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞) → ∃𝑟(𝑟 ∈ 𝑋 ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)))) |
| 164 | 163 | adantr 481 |
. . . . . . . . . . 11
⊢
(((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) → (∃𝑟(𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞) → ∃𝑟(𝑟 ∈ 𝑋 ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)))) |
| 165 | 148, 164 | mpd 15 |
. . . . . . . . . 10
⊢
(((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) → ∃𝑟(𝑟 ∈ 𝑋 ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞))) |
| 166 | | df-rex 2918 |
. . . . . . . . . 10
⊢
(∃𝑟 ∈
𝑋 (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞) ↔ ∃𝑟(𝑟 ∈ 𝑋 ∧ (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞))) |
| 167 | 165, 166 | sylibr 224 |
. . . . . . . . 9
⊢
(((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) → ∃𝑟 ∈ 𝑋 (𝑝(◡𝐷 “ (0[,)(𝑎 / 2)))𝑟 ∧ 𝑟(◡𝐷 “ (0[,)(𝑎 / 2)))𝑞)) |
| 168 | 141, 167 | r19.29a 3078 |
. . . . . . . 8
⊢
(((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) → 𝑝𝐴𝑞) |
| 169 | | df-br 4654 |
. . . . . . . 8
⊢ (𝑝𝐴𝑞 ↔ 〈𝑝, 𝑞〉 ∈ 𝐴) |
| 170 | 168, 169 | sylib 208 |
. . . . . . 7
⊢
(((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) → 〈𝑝, 𝑞〉 ∈ 𝐴) |
| 171 | 43, 44, 45, 46, 170 | syl31anc 1329 |
. . . . . 6
⊢
(((((((𝑋 ≠
∅ ∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) ∧ (𝑝 ∈ 𝑋 ∧ 𝑞 ∈ 𝑋)) → 〈𝑝, 𝑞〉 ∈ 𝐴) |
| 172 | 42, 171 | mpdan 702 |
. . . . 5
⊢
((((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) ∧ 〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) → 〈𝑝, 𝑞〉 ∈ 𝐴) |
| 173 | 172 | ex 450 |
. . . 4
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → (〈𝑝, 𝑞〉 ∈ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2)))) → 〈𝑝, 𝑞〉 ∈ 𝐴)) |
| 174 | 20, 173 | relssdv 5212 |
. . 3
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2)))) ⊆ 𝐴) |
| 175 | | id 22 |
. . . . . 6
⊢ (𝑣 = (◡𝐷 “ (0[,)(𝑎 / 2))) → 𝑣 = (◡𝐷 “ (0[,)(𝑎 / 2)))) |
| 176 | 175, 175 | coeq12d 5286 |
. . . . 5
⊢ (𝑣 = (◡𝐷 “ (0[,)(𝑎 / 2))) → (𝑣 ∘ 𝑣) = ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2))))) |
| 177 | 176 | sseq1d 3632 |
. . . 4
⊢ (𝑣 = (◡𝐷 “ (0[,)(𝑎 / 2))) → ((𝑣 ∘ 𝑣) ⊆ 𝐴 ↔ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2)))) ⊆ 𝐴)) |
| 178 | 177 | rspcev 3309 |
. . 3
⊢ (((◡𝐷 “ (0[,)(𝑎 / 2))) ∈ 𝐹 ∧ ((◡𝐷 “ (0[,)(𝑎 / 2))) ∘ (◡𝐷 “ (0[,)(𝑎 / 2)))) ⊆ 𝐴) → ∃𝑣 ∈ 𝐹 (𝑣 ∘ 𝑣) ⊆ 𝐴) |
| 179 | 18, 174, 178 | syl2anc 693 |
. 2
⊢
(((((𝑋 ≠ ∅
∧ 𝐷 ∈
(PsMet‘𝑋)) ∧
𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝐴 = (◡𝐷 “ (0[,)𝑎))) → ∃𝑣 ∈ 𝐹 (𝑣 ∘ 𝑣) ⊆ 𝐴) |
| 180 | 10 | metustel 22355 |
. . . 4
⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐴 ∈ 𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐴 = (◡𝐷 “ (0[,)𝑎)))) |
| 181 | 180 | adantl 482 |
. . 3
⊢ ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝐴 ∈ 𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐴 = (◡𝐷 “ (0[,)𝑎)))) |
| 182 | 181 | biimpa 501 |
. 2
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴 ∈ 𝐹) → ∃𝑎 ∈ ℝ+ 𝐴 = (◡𝐷 “ (0[,)𝑎))) |
| 183 | 179, 182 | r19.29a 3078 |
1
⊢ (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝐴 ∈ 𝐹) → ∃𝑣 ∈ 𝐹 (𝑣 ∘ 𝑣) ⊆ 𝐴) |