Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgmhmco Structured version   Visualization version   GIF version

Theorem mgmhmco 41801
Description: The composition of magma homomorphisms is a homomorphism. (Contributed by AV, 27-Feb-2020.)
Assertion
Ref Expression
mgmhmco ((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 MgmHom 𝑈))

Proof of Theorem mgmhmco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgmhmrcl 41781 . . . 4 (𝐹 ∈ (𝑇 MgmHom 𝑈) → (𝑇 ∈ Mgm ∧ 𝑈 ∈ Mgm))
21simprd 479 . . 3 (𝐹 ∈ (𝑇 MgmHom 𝑈) → 𝑈 ∈ Mgm)
3 mgmhmrcl 41781 . . . 4 (𝐺 ∈ (𝑆 MgmHom 𝑇) → (𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm))
43simpld 475 . . 3 (𝐺 ∈ (𝑆 MgmHom 𝑇) → 𝑆 ∈ Mgm)
52, 4anim12ci 591 . 2 ((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → (𝑆 ∈ Mgm ∧ 𝑈 ∈ Mgm))
6 eqid 2622 . . . . 5 (Base‘𝑇) = (Base‘𝑇)
7 eqid 2622 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
86, 7mgmhmf 41784 . . . 4 (𝐹 ∈ (𝑇 MgmHom 𝑈) → 𝐹:(Base‘𝑇)⟶(Base‘𝑈))
9 eqid 2622 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
109, 6mgmhmf 41784 . . . 4 (𝐺 ∈ (𝑆 MgmHom 𝑇) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇))
11 fco 6058 . . . 4 ((𝐹:(Base‘𝑇)⟶(Base‘𝑈) ∧ 𝐺:(Base‘𝑆)⟶(Base‘𝑇)) → (𝐹𝐺):(Base‘𝑆)⟶(Base‘𝑈))
128, 10, 11syl2an 494 . . 3 ((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → (𝐹𝐺):(Base‘𝑆)⟶(Base‘𝑈))
13 eqid 2622 . . . . . . . . . 10 (+g𝑆) = (+g𝑆)
14 eqid 2622 . . . . . . . . . 10 (+g𝑇) = (+g𝑇)
159, 13, 14mgmhmlin 41786 . . . . . . . . 9 ((𝐺 ∈ (𝑆 MgmHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐺‘(𝑥(+g𝑆)𝑦)) = ((𝐺𝑥)(+g𝑇)(𝐺𝑦)))
16153expb 1266 . . . . . . . 8 ((𝐺 ∈ (𝑆 MgmHom 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐺‘(𝑥(+g𝑆)𝑦)) = ((𝐺𝑥)(+g𝑇)(𝐺𝑦)))
1716adantll 750 . . . . . . 7 (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐺‘(𝑥(+g𝑆)𝑦)) = ((𝐺𝑥)(+g𝑇)(𝐺𝑦)))
1817fveq2d 6195 . . . . . 6 (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝐺‘(𝑥(+g𝑆)𝑦))) = (𝐹‘((𝐺𝑥)(+g𝑇)(𝐺𝑦))))
19 simpll 790 . . . . . . 7 (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝐹 ∈ (𝑇 MgmHom 𝑈))
2010ad2antlr 763 . . . . . . . 8 (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝐺:(Base‘𝑆)⟶(Base‘𝑇))
21 simprl 794 . . . . . . . 8 (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝑥 ∈ (Base‘𝑆))
2220, 21ffvelrnd 6360 . . . . . . 7 (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐺𝑥) ∈ (Base‘𝑇))
23 simprr 796 . . . . . . . 8 (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝑦 ∈ (Base‘𝑆))
2420, 23ffvelrnd 6360 . . . . . . 7 (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐺𝑦) ∈ (Base‘𝑇))
25 eqid 2622 . . . . . . . 8 (+g𝑈) = (+g𝑈)
266, 14, 25mgmhmlin 41786 . . . . . . 7 ((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ (𝐺𝑥) ∈ (Base‘𝑇) ∧ (𝐺𝑦) ∈ (Base‘𝑇)) → (𝐹‘((𝐺𝑥)(+g𝑇)(𝐺𝑦))) = ((𝐹‘(𝐺𝑥))(+g𝑈)(𝐹‘(𝐺𝑦))))
2719, 22, 24, 26syl3anc 1326 . . . . . 6 (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘((𝐺𝑥)(+g𝑇)(𝐺𝑦))) = ((𝐹‘(𝐺𝑥))(+g𝑈)(𝐹‘(𝐺𝑦))))
2818, 27eqtrd 2656 . . . . 5 (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝐺‘(𝑥(+g𝑆)𝑦))) = ((𝐹‘(𝐺𝑥))(+g𝑈)(𝐹‘(𝐺𝑦))))
294adantl 482 . . . . . . 7 ((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → 𝑆 ∈ Mgm)
309, 13mgmcl 17245 . . . . . . . 8 ((𝑆 ∈ Mgm ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
31303expb 1266 . . . . . . 7 ((𝑆 ∈ Mgm ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
3229, 31sylan 488 . . . . . 6 (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆))
33 fvco3 6275 . . . . . 6 ((𝐺:(Base‘𝑆)⟶(Base‘𝑇) ∧ (𝑥(+g𝑆)𝑦) ∈ (Base‘𝑆)) → ((𝐹𝐺)‘(𝑥(+g𝑆)𝑦)) = (𝐹‘(𝐺‘(𝑥(+g𝑆)𝑦))))
3420, 32, 33syl2anc 693 . . . . 5 (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹𝐺)‘(𝑥(+g𝑆)𝑦)) = (𝐹‘(𝐺‘(𝑥(+g𝑆)𝑦))))
35 fvco3 6275 . . . . . . 7 ((𝐺:(Base‘𝑆)⟶(Base‘𝑇) ∧ 𝑥 ∈ (Base‘𝑆)) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
3620, 21, 35syl2anc 693 . . . . . 6 (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
37 fvco3 6275 . . . . . . 7 ((𝐺:(Base‘𝑆)⟶(Base‘𝑇) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
3820, 23, 37syl2anc 693 . . . . . 6 (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
3936, 38oveq12d 6668 . . . . 5 (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → (((𝐹𝐺)‘𝑥)(+g𝑈)((𝐹𝐺)‘𝑦)) = ((𝐹‘(𝐺𝑥))(+g𝑈)(𝐹‘(𝐺𝑦))))
4028, 34, 393eqtr4d 2666 . . . 4 (((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆))) → ((𝐹𝐺)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝐺)‘𝑥)(+g𝑈)((𝐹𝐺)‘𝑦)))
4140ralrimivva 2971 . . 3 ((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)((𝐹𝐺)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝐺)‘𝑥)(+g𝑈)((𝐹𝐺)‘𝑦)))
4212, 41jca 554 . 2 ((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → ((𝐹𝐺):(Base‘𝑆)⟶(Base‘𝑈) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)((𝐹𝐺)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝐺)‘𝑥)(+g𝑈)((𝐹𝐺)‘𝑦))))
439, 7, 13, 25ismgmhm 41783 . 2 ((𝐹𝐺) ∈ (𝑆 MgmHom 𝑈) ↔ ((𝑆 ∈ Mgm ∧ 𝑈 ∈ Mgm) ∧ ((𝐹𝐺):(Base‘𝑆)⟶(Base‘𝑈) ∧ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)((𝐹𝐺)‘(𝑥(+g𝑆)𝑦)) = (((𝐹𝐺)‘𝑥)(+g𝑈)((𝐹𝐺)‘𝑦)))))
445, 42, 43sylanbrc 698 1 ((𝐹 ∈ (𝑇 MgmHom 𝑈) ∧ 𝐺 ∈ (𝑆 MgmHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 MgmHom 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  ccom 5118  wf 5884  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  Mgmcmgm 17240   MgmHom cmgmhm 41777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-mgm 17242  df-mgmhm 41779
This theorem is referenced by:  rnghmco  41907
  Copyright terms: Public domain W3C validator