MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mircgrextend Structured version   Visualization version   GIF version

Theorem mircgrextend 25577
Description: Link congruence over a pair of mirror points. cf tgcgrextend 25380. (Contributed by Thierry Arnoux, 4-Oct-2020.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirtrcgr.e = (cgrG‘𝐺)
mirtrcgr.m 𝑀 = (𝑆𝐵)
mirtrcgr.n 𝑁 = (𝑆𝑌)
mirtrcgr.a (𝜑𝐴𝑃)
mirtrcgr.b (𝜑𝐵𝑃)
mirtrcgr.x (𝜑𝑋𝑃)
mirtrcgr.y (𝜑𝑌𝑃)
mircgrextend.1 (𝜑 → (𝐴 𝐵) = (𝑋 𝑌))
Assertion
Ref Expression
mircgrextend (𝜑 → (𝐴 (𝑀𝐴)) = (𝑋 (𝑁𝑋)))

Proof of Theorem mircgrextend
StepHypRef Expression
1 mirval.p . 2 𝑃 = (Base‘𝐺)
2 mirval.d . 2 = (dist‘𝐺)
3 mirval.i . 2 𝐼 = (Itv‘𝐺)
4 mirval.g . 2 (𝜑𝐺 ∈ TarskiG)
5 mirtrcgr.a . 2 (𝜑𝐴𝑃)
6 mirtrcgr.b . 2 (𝜑𝐵𝑃)
7 mirval.l . . 3 𝐿 = (LineG‘𝐺)
8 mirval.s . . 3 𝑆 = (pInvG‘𝐺)
9 mirtrcgr.m . . 3 𝑀 = (𝑆𝐵)
101, 2, 3, 7, 8, 4, 6, 9, 5mircl 25556 . 2 (𝜑 → (𝑀𝐴) ∈ 𝑃)
11 mirtrcgr.x . 2 (𝜑𝑋𝑃)
12 mirtrcgr.y . 2 (𝜑𝑌𝑃)
13 mirtrcgr.n . . 3 𝑁 = (𝑆𝑌)
141, 2, 3, 7, 8, 4, 12, 13, 11mircl 25556 . 2 (𝜑 → (𝑁𝑋) ∈ 𝑃)
151, 2, 3, 7, 8, 4, 6, 9, 5mirbtwn 25553 . . 3 (𝜑𝐵 ∈ ((𝑀𝐴)𝐼𝐴))
161, 2, 3, 4, 10, 6, 5, 15tgbtwncom 25383 . 2 (𝜑𝐵 ∈ (𝐴𝐼(𝑀𝐴)))
171, 2, 3, 7, 8, 4, 12, 13, 11mirbtwn 25553 . . 3 (𝜑𝑌 ∈ ((𝑁𝑋)𝐼𝑋))
181, 2, 3, 4, 14, 12, 11, 17tgbtwncom 25383 . 2 (𝜑𝑌 ∈ (𝑋𝐼(𝑁𝑋)))
19 mircgrextend.1 . 2 (𝜑 → (𝐴 𝐵) = (𝑋 𝑌))
201, 2, 3, 4, 5, 6, 11, 12, 19tgcgrcomlr 25375 . . 3 (𝜑 → (𝐵 𝐴) = (𝑌 𝑋))
211, 2, 3, 7, 8, 4, 6, 9, 5mircgr 25552 . . 3 (𝜑 → (𝐵 (𝑀𝐴)) = (𝐵 𝐴))
221, 2, 3, 7, 8, 4, 12, 13, 11mircgr 25552 . . 3 (𝜑 → (𝑌 (𝑁𝑋)) = (𝑌 𝑋))
2320, 21, 223eqtr4d 2666 . 2 (𝜑 → (𝐵 (𝑀𝐴)) = (𝑌 (𝑁𝑋)))
241, 2, 3, 4, 5, 6, 10, 11, 12, 14, 16, 18, 19, 23tgcgrextend 25380 1 (𝜑 → (𝐴 (𝑀𝐴)) = (𝑋 (𝑁𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  cfv 5888  (class class class)co 6650  Basecbs 15857  distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  cgrGccgrg 25405  pInvGcmir 25547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-mir 25548
This theorem is referenced by:  mirtrcgr  25578
  Copyright terms: Public domain W3C validator