MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mircgrextend Structured version   Visualization version   Unicode version

Theorem mircgrextend 25577
Description: Link congruence over a pair of mirror points. cf tgcgrextend 25380. (Contributed by Thierry Arnoux, 4-Oct-2020.)
Hypotheses
Ref Expression
mirval.p  |-  P  =  ( Base `  G
)
mirval.d  |-  .-  =  ( dist `  G )
mirval.i  |-  I  =  (Itv `  G )
mirval.l  |-  L  =  (LineG `  G )
mirval.s  |-  S  =  (pInvG `  G )
mirval.g  |-  ( ph  ->  G  e. TarskiG )
mirtrcgr.e  |-  .~  =  (cgrG `  G )
mirtrcgr.m  |-  M  =  ( S `  B
)
mirtrcgr.n  |-  N  =  ( S `  Y
)
mirtrcgr.a  |-  ( ph  ->  A  e.  P )
mirtrcgr.b  |-  ( ph  ->  B  e.  P )
mirtrcgr.x  |-  ( ph  ->  X  e.  P )
mirtrcgr.y  |-  ( ph  ->  Y  e.  P )
mircgrextend.1  |-  ( ph  ->  ( A  .-  B
)  =  ( X 
.-  Y ) )
Assertion
Ref Expression
mircgrextend  |-  ( ph  ->  ( A  .-  ( M `  A )
)  =  ( X 
.-  ( N `  X ) ) )

Proof of Theorem mircgrextend
StepHypRef Expression
1 mirval.p . 2  |-  P  =  ( Base `  G
)
2 mirval.d . 2  |-  .-  =  ( dist `  G )
3 mirval.i . 2  |-  I  =  (Itv `  G )
4 mirval.g . 2  |-  ( ph  ->  G  e. TarskiG )
5 mirtrcgr.a . 2  |-  ( ph  ->  A  e.  P )
6 mirtrcgr.b . 2  |-  ( ph  ->  B  e.  P )
7 mirval.l . . 3  |-  L  =  (LineG `  G )
8 mirval.s . . 3  |-  S  =  (pInvG `  G )
9 mirtrcgr.m . . 3  |-  M  =  ( S `  B
)
101, 2, 3, 7, 8, 4, 6, 9, 5mircl 25556 . 2  |-  ( ph  ->  ( M `  A
)  e.  P )
11 mirtrcgr.x . 2  |-  ( ph  ->  X  e.  P )
12 mirtrcgr.y . 2  |-  ( ph  ->  Y  e.  P )
13 mirtrcgr.n . . 3  |-  N  =  ( S `  Y
)
141, 2, 3, 7, 8, 4, 12, 13, 11mircl 25556 . 2  |-  ( ph  ->  ( N `  X
)  e.  P )
151, 2, 3, 7, 8, 4, 6, 9, 5mirbtwn 25553 . . 3  |-  ( ph  ->  B  e.  ( ( M `  A ) I A ) )
161, 2, 3, 4, 10, 6, 5, 15tgbtwncom 25383 . 2  |-  ( ph  ->  B  e.  ( A I ( M `  A ) ) )
171, 2, 3, 7, 8, 4, 12, 13, 11mirbtwn 25553 . . 3  |-  ( ph  ->  Y  e.  ( ( N `  X ) I X ) )
181, 2, 3, 4, 14, 12, 11, 17tgbtwncom 25383 . 2  |-  ( ph  ->  Y  e.  ( X I ( N `  X ) ) )
19 mircgrextend.1 . 2  |-  ( ph  ->  ( A  .-  B
)  =  ( X 
.-  Y ) )
201, 2, 3, 4, 5, 6, 11, 12, 19tgcgrcomlr 25375 . . 3  |-  ( ph  ->  ( B  .-  A
)  =  ( Y 
.-  X ) )
211, 2, 3, 7, 8, 4, 6, 9, 5mircgr 25552 . . 3  |-  ( ph  ->  ( B  .-  ( M `  A )
)  =  ( B 
.-  A ) )
221, 2, 3, 7, 8, 4, 12, 13, 11mircgr 25552 . . 3  |-  ( ph  ->  ( Y  .-  ( N `  X )
)  =  ( Y 
.-  X ) )
2320, 21, 223eqtr4d 2666 . 2  |-  ( ph  ->  ( B  .-  ( M `  A )
)  =  ( Y 
.-  ( N `  X ) ) )
241, 2, 3, 4, 5, 6, 10, 11, 12, 14, 16, 18, 19, 23tgcgrextend 25380 1  |-  ( ph  ->  ( A  .-  ( M `  A )
)  =  ( X 
.-  ( N `  X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  cgrGccgrg 25405  pInvGcmir 25547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-mir 25548
This theorem is referenced by:  mirtrcgr  25578
  Copyright terms: Public domain W3C validator