MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirconn Structured version   Visualization version   GIF version

Theorem mirconn 25573
Description: Point inversion of connectedness. (Contributed by Thierry Arnoux, 2-Mar-2020.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirconn.m 𝑀 = (𝑆𝐴)
mirconn.a (𝜑𝐴𝑃)
mirconn.x (𝜑𝑋𝑃)
mirconn.y (𝜑𝑌𝑃)
mirconn.1 (𝜑 → (𝑋 ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼𝑋)))
Assertion
Ref Expression
mirconn (𝜑𝐴 ∈ (𝑋𝐼(𝑀𝑌)))

Proof of Theorem mirconn
StepHypRef Expression
1 mirval.p . . 3 𝑃 = (Base‘𝐺)
2 mirval.d . . 3 = (dist‘𝐺)
3 mirval.i . . 3 𝐼 = (Itv‘𝐺)
4 mirval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
54adantr 481 . . 3 ((𝜑𝑋 ∈ (𝐴𝐼𝑌)) → 𝐺 ∈ TarskiG)
6 mirconn.x . . . 4 (𝜑𝑋𝑃)
76adantr 481 . . 3 ((𝜑𝑋 ∈ (𝐴𝐼𝑌)) → 𝑋𝑃)
8 mirconn.a . . . 4 (𝜑𝐴𝑃)
98adantr 481 . . 3 ((𝜑𝑋 ∈ (𝐴𝐼𝑌)) → 𝐴𝑃)
10 mirval.l . . . . 5 𝐿 = (LineG‘𝐺)
11 mirval.s . . . . 5 𝑆 = (pInvG‘𝐺)
12 mirconn.m . . . . 5 𝑀 = (𝑆𝐴)
13 mirconn.y . . . . 5 (𝜑𝑌𝑃)
141, 2, 3, 10, 11, 4, 8, 12, 13mircl 25556 . . . 4 (𝜑 → (𝑀𝑌) ∈ 𝑃)
1514adantr 481 . . 3 ((𝜑𝑋 ∈ (𝐴𝐼𝑌)) → (𝑀𝑌) ∈ 𝑃)
1613adantr 481 . . 3 ((𝜑𝑋 ∈ (𝐴𝐼𝑌)) → 𝑌𝑃)
17 simpr 477 . . 3 ((𝜑𝑋 ∈ (𝐴𝐼𝑌)) → 𝑋 ∈ (𝐴𝐼𝑌))
181, 2, 3, 10, 11, 4, 8, 12, 13mirbtwn 25553 . . . 4 (𝜑𝐴 ∈ ((𝑀𝑌)𝐼𝑌))
1918adantr 481 . . 3 ((𝜑𝑋 ∈ (𝐴𝐼𝑌)) → 𝐴 ∈ ((𝑀𝑌)𝐼𝑌))
201, 2, 3, 5, 7, 9, 15, 16, 17, 19tgbtwnintr 25388 . 2 ((𝜑𝑋 ∈ (𝐴𝐼𝑌)) → 𝐴 ∈ (𝑋𝐼(𝑀𝑌)))
211, 2, 3, 4, 6, 8tgbtwntriv2 25382 . . . . . 6 (𝜑𝐴 ∈ (𝑋𝐼𝐴))
2221adantr 481 . . . . 5 ((𝜑𝑌 = 𝐴) → 𝐴 ∈ (𝑋𝐼𝐴))
23 simpr 477 . . . . . . . 8 ((𝜑𝑌 = 𝐴) → 𝑌 = 𝐴)
2423fveq2d 6195 . . . . . . 7 ((𝜑𝑌 = 𝐴) → (𝑀𝑌) = (𝑀𝐴))
251, 2, 3, 10, 11, 4, 8, 12mircinv 25563 . . . . . . . 8 (𝜑 → (𝑀𝐴) = 𝐴)
2625adantr 481 . . . . . . 7 ((𝜑𝑌 = 𝐴) → (𝑀𝐴) = 𝐴)
2724, 26eqtrd 2656 . . . . . 6 ((𝜑𝑌 = 𝐴) → (𝑀𝑌) = 𝐴)
2827oveq2d 6666 . . . . 5 ((𝜑𝑌 = 𝐴) → (𝑋𝐼(𝑀𝑌)) = (𝑋𝐼𝐴))
2922, 28eleqtrrd 2704 . . . 4 ((𝜑𝑌 = 𝐴) → 𝐴 ∈ (𝑋𝐼(𝑀𝑌)))
3029adantlr 751 . . 3 (((𝜑𝑌 ∈ (𝐴𝐼𝑋)) ∧ 𝑌 = 𝐴) → 𝐴 ∈ (𝑋𝐼(𝑀𝑌)))
314ad2antrr 762 . . . 4 (((𝜑𝑌 ∈ (𝐴𝐼𝑋)) ∧ 𝑌𝐴) → 𝐺 ∈ TarskiG)
326ad2antrr 762 . . . 4 (((𝜑𝑌 ∈ (𝐴𝐼𝑋)) ∧ 𝑌𝐴) → 𝑋𝑃)
3313ad2antrr 762 . . . 4 (((𝜑𝑌 ∈ (𝐴𝐼𝑋)) ∧ 𝑌𝐴) → 𝑌𝑃)
348ad2antrr 762 . . . 4 (((𝜑𝑌 ∈ (𝐴𝐼𝑋)) ∧ 𝑌𝐴) → 𝐴𝑃)
3514ad2antrr 762 . . . 4 (((𝜑𝑌 ∈ (𝐴𝐼𝑋)) ∧ 𝑌𝐴) → (𝑀𝑌) ∈ 𝑃)
36 simpr 477 . . . 4 (((𝜑𝑌 ∈ (𝐴𝐼𝑋)) ∧ 𝑌𝐴) → 𝑌𝐴)
37 simplr 792 . . . . 5 (((𝜑𝑌 ∈ (𝐴𝐼𝑋)) ∧ 𝑌𝐴) → 𝑌 ∈ (𝐴𝐼𝑋))
381, 2, 3, 31, 34, 33, 32, 37tgbtwncom 25383 . . . 4 (((𝜑𝑌 ∈ (𝐴𝐼𝑋)) ∧ 𝑌𝐴) → 𝑌 ∈ (𝑋𝐼𝐴))
391, 2, 3, 4, 14, 8, 13, 18tgbtwncom 25383 . . . . 5 (𝜑𝐴 ∈ (𝑌𝐼(𝑀𝑌)))
4039ad2antrr 762 . . . 4 (((𝜑𝑌 ∈ (𝐴𝐼𝑋)) ∧ 𝑌𝐴) → 𝐴 ∈ (𝑌𝐼(𝑀𝑌)))
411, 2, 3, 31, 32, 33, 34, 35, 36, 38, 40tgbtwnouttr2 25390 . . 3 (((𝜑𝑌 ∈ (𝐴𝐼𝑋)) ∧ 𝑌𝐴) → 𝐴 ∈ (𝑋𝐼(𝑀𝑌)))
4230, 41pm2.61dane 2881 . 2 ((𝜑𝑌 ∈ (𝐴𝐼𝑋)) → 𝐴 ∈ (𝑋𝐼(𝑀𝑌)))
43 mirconn.1 . 2 (𝜑 → (𝑋 ∈ (𝐴𝐼𝑌) ∨ 𝑌 ∈ (𝐴𝐼𝑋)))
4420, 42, 43mpjaodan 827 1 (𝜑𝐴 ∈ (𝑋𝐼(𝑀𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794  cfv 5888  (class class class)co 6650  Basecbs 15857  distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  pInvGcmir 25547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-mir 25548
This theorem is referenced by:  mirbtwnhl  25575
  Copyright terms: Public domain W3C validator