MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirconn Structured version   Visualization version   Unicode version

Theorem mirconn 25573
Description: Point inversion of connectedness. (Contributed by Thierry Arnoux, 2-Mar-2020.)
Hypotheses
Ref Expression
mirval.p  |-  P  =  ( Base `  G
)
mirval.d  |-  .-  =  ( dist `  G )
mirval.i  |-  I  =  (Itv `  G )
mirval.l  |-  L  =  (LineG `  G )
mirval.s  |-  S  =  (pInvG `  G )
mirval.g  |-  ( ph  ->  G  e. TarskiG )
mirconn.m  |-  M  =  ( S `  A
)
mirconn.a  |-  ( ph  ->  A  e.  P )
mirconn.x  |-  ( ph  ->  X  e.  P )
mirconn.y  |-  ( ph  ->  Y  e.  P )
mirconn.1  |-  ( ph  ->  ( X  e.  ( A I Y )  \/  Y  e.  ( A I X ) ) )
Assertion
Ref Expression
mirconn  |-  ( ph  ->  A  e.  ( X I ( M `  Y ) ) )

Proof of Theorem mirconn
StepHypRef Expression
1 mirval.p . . 3  |-  P  =  ( Base `  G
)
2 mirval.d . . 3  |-  .-  =  ( dist `  G )
3 mirval.i . . 3  |-  I  =  (Itv `  G )
4 mirval.g . . . 4  |-  ( ph  ->  G  e. TarskiG )
54adantr 481 . . 3  |-  ( (
ph  /\  X  e.  ( A I Y ) )  ->  G  e. TarskiG )
6 mirconn.x . . . 4  |-  ( ph  ->  X  e.  P )
76adantr 481 . . 3  |-  ( (
ph  /\  X  e.  ( A I Y ) )  ->  X  e.  P )
8 mirconn.a . . . 4  |-  ( ph  ->  A  e.  P )
98adantr 481 . . 3  |-  ( (
ph  /\  X  e.  ( A I Y ) )  ->  A  e.  P )
10 mirval.l . . . . 5  |-  L  =  (LineG `  G )
11 mirval.s . . . . 5  |-  S  =  (pInvG `  G )
12 mirconn.m . . . . 5  |-  M  =  ( S `  A
)
13 mirconn.y . . . . 5  |-  ( ph  ->  Y  e.  P )
141, 2, 3, 10, 11, 4, 8, 12, 13mircl 25556 . . . 4  |-  ( ph  ->  ( M `  Y
)  e.  P )
1514adantr 481 . . 3  |-  ( (
ph  /\  X  e.  ( A I Y ) )  ->  ( M `  Y )  e.  P
)
1613adantr 481 . . 3  |-  ( (
ph  /\  X  e.  ( A I Y ) )  ->  Y  e.  P )
17 simpr 477 . . 3  |-  ( (
ph  /\  X  e.  ( A I Y ) )  ->  X  e.  ( A I Y ) )
181, 2, 3, 10, 11, 4, 8, 12, 13mirbtwn 25553 . . . 4  |-  ( ph  ->  A  e.  ( ( M `  Y ) I Y ) )
1918adantr 481 . . 3  |-  ( (
ph  /\  X  e.  ( A I Y ) )  ->  A  e.  ( ( M `  Y ) I Y ) )
201, 2, 3, 5, 7, 9, 15, 16, 17, 19tgbtwnintr 25388 . 2  |-  ( (
ph  /\  X  e.  ( A I Y ) )  ->  A  e.  ( X I ( M `
 Y ) ) )
211, 2, 3, 4, 6, 8tgbtwntriv2 25382 . . . . . 6  |-  ( ph  ->  A  e.  ( X I A ) )
2221adantr 481 . . . . 5  |-  ( (
ph  /\  Y  =  A )  ->  A  e.  ( X I A ) )
23 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  Y  =  A )  ->  Y  =  A )
2423fveq2d 6195 . . . . . . 7  |-  ( (
ph  /\  Y  =  A )  ->  ( M `  Y )  =  ( M `  A ) )
251, 2, 3, 10, 11, 4, 8, 12mircinv 25563 . . . . . . . 8  |-  ( ph  ->  ( M `  A
)  =  A )
2625adantr 481 . . . . . . 7  |-  ( (
ph  /\  Y  =  A )  ->  ( M `  A )  =  A )
2724, 26eqtrd 2656 . . . . . 6  |-  ( (
ph  /\  Y  =  A )  ->  ( M `  Y )  =  A )
2827oveq2d 6666 . . . . 5  |-  ( (
ph  /\  Y  =  A )  ->  ( X I ( M `
 Y ) )  =  ( X I A ) )
2922, 28eleqtrrd 2704 . . . 4  |-  ( (
ph  /\  Y  =  A )  ->  A  e.  ( X I ( M `  Y ) ) )
3029adantlr 751 . . 3  |-  ( ( ( ph  /\  Y  e.  ( A I X ) )  /\  Y  =  A )  ->  A  e.  ( X I ( M `  Y ) ) )
314ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  Y  e.  ( A I X ) )  /\  Y  =/=  A )  ->  G  e. TarskiG )
326ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  Y  e.  ( A I X ) )  /\  Y  =/=  A )  ->  X  e.  P )
3313ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  Y  e.  ( A I X ) )  /\  Y  =/=  A )  ->  Y  e.  P )
348ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  Y  e.  ( A I X ) )  /\  Y  =/=  A )  ->  A  e.  P )
3514ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  Y  e.  ( A I X ) )  /\  Y  =/=  A )  ->  ( M `  Y )  e.  P )
36 simpr 477 . . . 4  |-  ( ( ( ph  /\  Y  e.  ( A I X ) )  /\  Y  =/=  A )  ->  Y  =/=  A )
37 simplr 792 . . . . 5  |-  ( ( ( ph  /\  Y  e.  ( A I X ) )  /\  Y  =/=  A )  ->  Y  e.  ( A I X ) )
381, 2, 3, 31, 34, 33, 32, 37tgbtwncom 25383 . . . 4  |-  ( ( ( ph  /\  Y  e.  ( A I X ) )  /\  Y  =/=  A )  ->  Y  e.  ( X I A ) )
391, 2, 3, 4, 14, 8, 13, 18tgbtwncom 25383 . . . . 5  |-  ( ph  ->  A  e.  ( Y I ( M `  Y ) ) )
4039ad2antrr 762 . . . 4  |-  ( ( ( ph  /\  Y  e.  ( A I X ) )  /\  Y  =/=  A )  ->  A  e.  ( Y I ( M `  Y ) ) )
411, 2, 3, 31, 32, 33, 34, 35, 36, 38, 40tgbtwnouttr2 25390 . . 3  |-  ( ( ( ph  /\  Y  e.  ( A I X ) )  /\  Y  =/=  A )  ->  A  e.  ( X I ( M `  Y ) ) )
4230, 41pm2.61dane 2881 . 2  |-  ( (
ph  /\  Y  e.  ( A I X ) )  ->  A  e.  ( X I ( M `
 Y ) ) )
43 mirconn.1 . 2  |-  ( ph  ->  ( X  e.  ( A I Y )  \/  Y  e.  ( A I X ) ) )
4420, 42, 43mpjaodan 827 1  |-  ( ph  ->  A  e.  ( X I ( M `  Y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   ` cfv 5888  (class class class)co 6650   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  pInvGcmir 25547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-mir 25548
This theorem is referenced by:  mirbtwnhl  25575
  Copyright terms: Public domain W3C validator