MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirreu Structured version   Visualization version   GIF version

Theorem mirreu 25559
Description: Any point has a unique antecedent through point inversion. Theorem 7.8 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 3-Jun-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
mirmir.b (𝜑𝐵𝑃)
Assertion
Ref Expression
mirreu (𝜑 → ∃!𝑎𝑃 (𝑀𝑎) = 𝐵)
Distinct variable groups:   𝐵,𝑎   𝑀,𝑎   𝑃,𝑎   𝜑,𝑎
Allowed substitution hints:   𝐴(𝑎)   𝑆(𝑎)   𝐺(𝑎)   𝐼(𝑎)   𝐿(𝑎)   (𝑎)

Proof of Theorem mirreu
StepHypRef Expression
1 mirval.p . . 3 𝑃 = (Base‘𝐺)
2 mirval.d . . 3 = (dist‘𝐺)
3 mirval.i . . 3 𝐼 = (Itv‘𝐺)
4 mirval.l . . 3 𝐿 = (LineG‘𝐺)
5 mirval.s . . 3 𝑆 = (pInvG‘𝐺)
6 mirval.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 mirval.a . . 3 (𝜑𝐴𝑃)
8 mirfv.m . . 3 𝑀 = (𝑆𝐴)
9 mirmir.b . . 3 (𝜑𝐵𝑃)
101, 2, 3, 4, 5, 6, 7, 8, 9mircl 25556 . 2 (𝜑 → (𝑀𝐵) ∈ 𝑃)
111, 2, 3, 4, 5, 6, 7, 8, 9mirmir 25557 . 2 (𝜑 → (𝑀‘(𝑀𝐵)) = 𝐵)
126ad2antrr 762 . . . . . 6 (((𝜑𝑎𝑃) ∧ (𝑀𝑎) = 𝐵) → 𝐺 ∈ TarskiG)
137ad2antrr 762 . . . . . 6 (((𝜑𝑎𝑃) ∧ (𝑀𝑎) = 𝐵) → 𝐴𝑃)
14 simplr 792 . . . . . 6 (((𝜑𝑎𝑃) ∧ (𝑀𝑎) = 𝐵) → 𝑎𝑃)
151, 2, 3, 4, 5, 12, 13, 8, 14mirmir 25557 . . . . 5 (((𝜑𝑎𝑃) ∧ (𝑀𝑎) = 𝐵) → (𝑀‘(𝑀𝑎)) = 𝑎)
16 simpr 477 . . . . . 6 (((𝜑𝑎𝑃) ∧ (𝑀𝑎) = 𝐵) → (𝑀𝑎) = 𝐵)
1716fveq2d 6195 . . . . 5 (((𝜑𝑎𝑃) ∧ (𝑀𝑎) = 𝐵) → (𝑀‘(𝑀𝑎)) = (𝑀𝐵))
1815, 17eqtr3d 2658 . . . 4 (((𝜑𝑎𝑃) ∧ (𝑀𝑎) = 𝐵) → 𝑎 = (𝑀𝐵))
1918ex 450 . . 3 ((𝜑𝑎𝑃) → ((𝑀𝑎) = 𝐵𝑎 = (𝑀𝐵)))
2019ralrimiva 2966 . 2 (𝜑 → ∀𝑎𝑃 ((𝑀𝑎) = 𝐵𝑎 = (𝑀𝐵)))
21 fveq2 6191 . . . 4 (𝑎 = (𝑀𝐵) → (𝑀𝑎) = (𝑀‘(𝑀𝐵)))
2221eqeq1d 2624 . . 3 (𝑎 = (𝑀𝐵) → ((𝑀𝑎) = 𝐵 ↔ (𝑀‘(𝑀𝐵)) = 𝐵))
2322eqreu 3398 . 2 (((𝑀𝐵) ∈ 𝑃 ∧ (𝑀‘(𝑀𝐵)) = 𝐵 ∧ ∀𝑎𝑃 ((𝑀𝑎) = 𝐵𝑎 = (𝑀𝐵))) → ∃!𝑎𝑃 (𝑀𝑎) = 𝐵)
2410, 11, 20, 23syl3anc 1326 1 (𝜑 → ∃!𝑎𝑃 (𝑀𝑎) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  ∃!wreu 2914  cfv 5888  Basecbs 15857  distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  pInvGcmir 25547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-mir 25548
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator