MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirreu Structured version   Visualization version   Unicode version

Theorem mirreu 25559
Description: Any point has a unique antecedent through point inversion. Theorem 7.8 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 3-Jun-2019.)
Hypotheses
Ref Expression
mirval.p  |-  P  =  ( Base `  G
)
mirval.d  |-  .-  =  ( dist `  G )
mirval.i  |-  I  =  (Itv `  G )
mirval.l  |-  L  =  (LineG `  G )
mirval.s  |-  S  =  (pInvG `  G )
mirval.g  |-  ( ph  ->  G  e. TarskiG )
mirval.a  |-  ( ph  ->  A  e.  P )
mirfv.m  |-  M  =  ( S `  A
)
mirmir.b  |-  ( ph  ->  B  e.  P )
Assertion
Ref Expression
mirreu  |-  ( ph  ->  E! a  e.  P  ( M `  a )  =  B )
Distinct variable groups:    B, a    M, a    P, a    ph, a
Allowed substitution hints:    A( a)    S( a)    G( a)    I( a)    L( a)    .- ( a)

Proof of Theorem mirreu
StepHypRef Expression
1 mirval.p . . 3  |-  P  =  ( Base `  G
)
2 mirval.d . . 3  |-  .-  =  ( dist `  G )
3 mirval.i . . 3  |-  I  =  (Itv `  G )
4 mirval.l . . 3  |-  L  =  (LineG `  G )
5 mirval.s . . 3  |-  S  =  (pInvG `  G )
6 mirval.g . . 3  |-  ( ph  ->  G  e. TarskiG )
7 mirval.a . . 3  |-  ( ph  ->  A  e.  P )
8 mirfv.m . . 3  |-  M  =  ( S `  A
)
9 mirmir.b . . 3  |-  ( ph  ->  B  e.  P )
101, 2, 3, 4, 5, 6, 7, 8, 9mircl 25556 . 2  |-  ( ph  ->  ( M `  B
)  e.  P )
111, 2, 3, 4, 5, 6, 7, 8, 9mirmir 25557 . 2  |-  ( ph  ->  ( M `  ( M `  B )
)  =  B )
126ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  a  e.  P )  /\  ( M `  a )  =  B )  ->  G  e. TarskiG )
137ad2antrr 762 . . . . . 6  |-  ( ( ( ph  /\  a  e.  P )  /\  ( M `  a )  =  B )  ->  A  e.  P )
14 simplr 792 . . . . . 6  |-  ( ( ( ph  /\  a  e.  P )  /\  ( M `  a )  =  B )  ->  a  e.  P )
151, 2, 3, 4, 5, 12, 13, 8, 14mirmir 25557 . . . . 5  |-  ( ( ( ph  /\  a  e.  P )  /\  ( M `  a )  =  B )  ->  ( M `  ( M `  a ) )  =  a )
16 simpr 477 . . . . . 6  |-  ( ( ( ph  /\  a  e.  P )  /\  ( M `  a )  =  B )  ->  ( M `  a )  =  B )
1716fveq2d 6195 . . . . 5  |-  ( ( ( ph  /\  a  e.  P )  /\  ( M `  a )  =  B )  ->  ( M `  ( M `  a ) )  =  ( M `  B
) )
1815, 17eqtr3d 2658 . . . 4  |-  ( ( ( ph  /\  a  e.  P )  /\  ( M `  a )  =  B )  ->  a  =  ( M `  B ) )
1918ex 450 . . 3  |-  ( (
ph  /\  a  e.  P )  ->  (
( M `  a
)  =  B  -> 
a  =  ( M `
 B ) ) )
2019ralrimiva 2966 . 2  |-  ( ph  ->  A. a  e.  P  ( ( M `  a )  =  B  ->  a  =  ( M `  B ) ) )
21 fveq2 6191 . . . 4  |-  ( a  =  ( M `  B )  ->  ( M `  a )  =  ( M `  ( M `  B ) ) )
2221eqeq1d 2624 . . 3  |-  ( a  =  ( M `  B )  ->  (
( M `  a
)  =  B  <->  ( M `  ( M `  B
) )  =  B ) )
2322eqreu 3398 . 2  |-  ( ( ( M `  B
)  e.  P  /\  ( M `  ( M `
 B ) )  =  B  /\  A. a  e.  P  (
( M `  a
)  =  B  -> 
a  =  ( M `
 B ) ) )  ->  E! a  e.  P  ( M `  a )  =  B )
2410, 11, 20, 23syl3anc 1326 1  |-  ( ph  ->  E! a  e.  P  ( M `  a )  =  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E!wreu 2914   ` cfv 5888   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  pInvGcmir 25547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-mir 25548
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator