MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndpropd Structured version   Visualization version   GIF version

Theorem mndpropd 17316
Description: If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a monoid iff the other one is. (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
mndpropd.1 (𝜑𝐵 = (Base‘𝐾))
mndpropd.2 (𝜑𝐵 = (Base‘𝐿))
mndpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
Assertion
Ref Expression
mndpropd (𝜑 → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝐿,𝑦

Proof of Theorem mndpropd
Dummy variables 𝑢 𝑠 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 792 . . . . . 6 (((𝜑𝐾 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → 𝐾 ∈ Mnd)
2 simprl 794 . . . . . . 7 (((𝜑𝐾 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
3 mndpropd.1 . . . . . . . 8 (𝜑𝐵 = (Base‘𝐾))
43ad2antrr 762 . . . . . . 7 (((𝜑𝐾 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → 𝐵 = (Base‘𝐾))
52, 4eleqtrd 2703 . . . . . 6 (((𝜑𝐾 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥 ∈ (Base‘𝐾))
6 simprr 796 . . . . . . 7 (((𝜑𝐾 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
76, 4eleqtrd 2703 . . . . . 6 (((𝜑𝐾 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 ∈ (Base‘𝐾))
8 eqid 2622 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
9 eqid 2622 . . . . . . 7 (+g𝐾) = (+g𝐾)
108, 9mndcl 17301 . . . . . 6 ((𝐾 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑥(+g𝐾)𝑦) ∈ (Base‘𝐾))
111, 5, 7, 10syl3anc 1326 . . . . 5 (((𝜑𝐾 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) ∈ (Base‘𝐾))
1211, 4eleqtrrd 2704 . . . 4 (((𝜑𝐾 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) ∈ 𝐵)
1312ralrimivva 2971 . . 3 ((𝜑𝐾 ∈ Mnd) → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵)
1413ex 450 . 2 (𝜑 → (𝐾 ∈ Mnd → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵))
15 simplr 792 . . . . . 6 (((𝜑𝐿 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → 𝐿 ∈ Mnd)
16 simprl 794 . . . . . . 7 (((𝜑𝐿 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥𝐵)
17 mndpropd.2 . . . . . . . 8 (𝜑𝐵 = (Base‘𝐿))
1817ad2antrr 762 . . . . . . 7 (((𝜑𝐿 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → 𝐵 = (Base‘𝐿))
1916, 18eleqtrd 2703 . . . . . 6 (((𝜑𝐿 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → 𝑥 ∈ (Base‘𝐿))
20 simprr 796 . . . . . . 7 (((𝜑𝐿 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦𝐵)
2120, 18eleqtrd 2703 . . . . . 6 (((𝜑𝐿 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → 𝑦 ∈ (Base‘𝐿))
22 eqid 2622 . . . . . . 7 (Base‘𝐿) = (Base‘𝐿)
23 eqid 2622 . . . . . . 7 (+g𝐿) = (+g𝐿)
2422, 23mndcl 17301 . . . . . 6 ((𝐿 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝐿) ∧ 𝑦 ∈ (Base‘𝐿)) → (𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿))
2515, 19, 21, 24syl3anc 1326 . . . . 5 (((𝜑𝐿 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐿)𝑦) ∈ (Base‘𝐿))
26 mndpropd.3 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
2726adantlr 751 . . . . 5 (((𝜑𝐿 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
2825, 27, 183eltr4d 2716 . . . 4 (((𝜑𝐿 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) ∈ 𝐵)
2928ralrimivva 2971 . . 3 ((𝜑𝐿 ∈ Mnd) → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵)
3029ex 450 . 2 (𝜑 → (𝐿 ∈ Mnd → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵))
3126oveqrspc2v 6673 . . . . . . . . . 10 ((𝜑 ∧ (𝑢𝐵𝑣𝐵)) → (𝑢(+g𝐾)𝑣) = (𝑢(+g𝐿)𝑣))
3231adantlr 751 . . . . . . . . 9 (((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) → (𝑢(+g𝐾)𝑣) = (𝑢(+g𝐿)𝑣))
3332eleq1d 2686 . . . . . . . 8 (((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) → ((𝑢(+g𝐾)𝑣) ∈ 𝐵 ↔ (𝑢(+g𝐿)𝑣) ∈ 𝐵))
34 simplll 798 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → 𝜑)
35 simplrl 800 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → 𝑢𝐵)
36 simplrr 801 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → 𝑣𝐵)
37 simpllr 799 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵)
38 ovrspc2v 6672 . . . . . . . . . . . . 13 (((𝑢𝐵𝑣𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (𝑢(+g𝐾)𝑣) ∈ 𝐵)
3935, 36, 37, 38syl21anc 1325 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → (𝑢(+g𝐾)𝑣) ∈ 𝐵)
40 simpr 477 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → 𝑤𝐵)
4126oveqrspc2v 6673 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑢(+g𝐾)𝑣) ∈ 𝐵𝑤𝐵)) → ((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = ((𝑢(+g𝐾)𝑣)(+g𝐿)𝑤))
4234, 39, 40, 41syl12anc 1324 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → ((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = ((𝑢(+g𝐾)𝑣)(+g𝐿)𝑤))
4334, 35, 36, 31syl12anc 1324 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → (𝑢(+g𝐾)𝑣) = (𝑢(+g𝐿)𝑣))
4443oveq1d 6665 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → ((𝑢(+g𝐾)𝑣)(+g𝐿)𝑤) = ((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤))
4542, 44eqtrd 2656 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → ((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = ((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤))
46 ovrspc2v 6672 . . . . . . . . . . . . 13 (((𝑣𝐵𝑤𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (𝑣(+g𝐾)𝑤) ∈ 𝐵)
4736, 40, 37, 46syl21anc 1325 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → (𝑣(+g𝐾)𝑤) ∈ 𝐵)
4826oveqrspc2v 6673 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢𝐵 ∧ (𝑣(+g𝐾)𝑤) ∈ 𝐵)) → (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤)) = (𝑢(+g𝐿)(𝑣(+g𝐾)𝑤)))
4934, 35, 47, 48syl12anc 1324 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤)) = (𝑢(+g𝐿)(𝑣(+g𝐾)𝑤)))
5026oveqrspc2v 6673 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑣𝐵𝑤𝐵)) → (𝑣(+g𝐾)𝑤) = (𝑣(+g𝐿)𝑤))
5134, 36, 40, 50syl12anc 1324 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → (𝑣(+g𝐾)𝑤) = (𝑣(+g𝐿)𝑤))
5251oveq2d 6666 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → (𝑢(+g𝐿)(𝑣(+g𝐾)𝑤)) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤)))
5349, 52eqtrd 2656 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤)) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤)))
5445, 53eqeq12d 2637 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) ∧ 𝑤𝐵) → (((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤)) ↔ ((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤))))
5554ralbidva 2985 . . . . . . . 8 (((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) → (∀𝑤𝐵 ((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤)) ↔ ∀𝑤𝐵 ((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤))))
5633, 55anbi12d 747 . . . . . . 7 (((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ (𝑢𝐵𝑣𝐵)) → (((𝑢(+g𝐾)𝑣) ∈ 𝐵 ∧ ∀𝑤𝐵 ((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤))) ↔ ((𝑢(+g𝐿)𝑣) ∈ 𝐵 ∧ ∀𝑤𝐵 ((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤)))))
57562ralbidva 2988 . . . . . 6 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (∀𝑢𝐵𝑣𝐵 ((𝑢(+g𝐾)𝑣) ∈ 𝐵 ∧ ∀𝑤𝐵 ((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤))) ↔ ∀𝑢𝐵𝑣𝐵 ((𝑢(+g𝐿)𝑣) ∈ 𝐵 ∧ ∀𝑤𝐵 ((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤)))))
583adantr 481 . . . . . . 7 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → 𝐵 = (Base‘𝐾))
5958eleq2d 2687 . . . . . . . . 9 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → ((𝑢(+g𝐾)𝑣) ∈ 𝐵 ↔ (𝑢(+g𝐾)𝑣) ∈ (Base‘𝐾)))
6058raleqdv 3144 . . . . . . . . 9 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (∀𝑤𝐵 ((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤)) ↔ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤))))
6159, 60anbi12d 747 . . . . . . . 8 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (((𝑢(+g𝐾)𝑣) ∈ 𝐵 ∧ ∀𝑤𝐵 ((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤))) ↔ ((𝑢(+g𝐾)𝑣) ∈ (Base‘𝐾) ∧ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤)))))
6258, 61raleqbidv 3152 . . . . . . 7 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (∀𝑣𝐵 ((𝑢(+g𝐾)𝑣) ∈ 𝐵 ∧ ∀𝑤𝐵 ((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤))) ↔ ∀𝑣 ∈ (Base‘𝐾)((𝑢(+g𝐾)𝑣) ∈ (Base‘𝐾) ∧ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤)))))
6358, 62raleqbidv 3152 . . . . . 6 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (∀𝑢𝐵𝑣𝐵 ((𝑢(+g𝐾)𝑣) ∈ 𝐵 ∧ ∀𝑤𝐵 ((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)((𝑢(+g𝐾)𝑣) ∈ (Base‘𝐾) ∧ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤)))))
6417adantr 481 . . . . . . 7 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → 𝐵 = (Base‘𝐿))
6564eleq2d 2687 . . . . . . . . 9 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → ((𝑢(+g𝐿)𝑣) ∈ 𝐵 ↔ (𝑢(+g𝐿)𝑣) ∈ (Base‘𝐿)))
6664raleqdv 3144 . . . . . . . . 9 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (∀𝑤𝐵 ((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤)) ↔ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤))))
6765, 66anbi12d 747 . . . . . . . 8 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (((𝑢(+g𝐿)𝑣) ∈ 𝐵 ∧ ∀𝑤𝐵 ((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤))) ↔ ((𝑢(+g𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤)))))
6864, 67raleqbidv 3152 . . . . . . 7 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (∀𝑣𝐵 ((𝑢(+g𝐿)𝑣) ∈ 𝐵 ∧ ∀𝑤𝐵 ((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤))) ↔ ∀𝑣 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤)))))
6964, 68raleqbidv 3152 . . . . . 6 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (∀𝑢𝐵𝑣𝐵 ((𝑢(+g𝐿)𝑣) ∈ 𝐵 ∧ ∀𝑤𝐵 ((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤)))))
7057, 63, 693bitr3d 298 . . . . 5 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)((𝑢(+g𝐾)𝑣) ∈ (Base‘𝐾) ∧ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤))) ↔ ∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤)))))
71 simplll 798 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ 𝑠𝐵) ∧ 𝑢𝐵) → 𝜑)
72 simplr 792 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ 𝑠𝐵) ∧ 𝑢𝐵) → 𝑠𝐵)
73 simpr 477 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ 𝑠𝐵) ∧ 𝑢𝐵) → 𝑢𝐵)
7426oveqrspc2v 6673 . . . . . . . . . . 11 ((𝜑 ∧ (𝑠𝐵𝑢𝐵)) → (𝑠(+g𝐾)𝑢) = (𝑠(+g𝐿)𝑢))
7571, 72, 73, 74syl12anc 1324 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ 𝑠𝐵) ∧ 𝑢𝐵) → (𝑠(+g𝐾)𝑢) = (𝑠(+g𝐿)𝑢))
7675eqeq1d 2624 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ 𝑠𝐵) ∧ 𝑢𝐵) → ((𝑠(+g𝐾)𝑢) = 𝑢 ↔ (𝑠(+g𝐿)𝑢) = 𝑢))
7726oveqrspc2v 6673 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢𝐵𝑠𝐵)) → (𝑢(+g𝐾)𝑠) = (𝑢(+g𝐿)𝑠))
7871, 73, 72, 77syl12anc 1324 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ 𝑠𝐵) ∧ 𝑢𝐵) → (𝑢(+g𝐾)𝑠) = (𝑢(+g𝐿)𝑠))
7978eqeq1d 2624 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ 𝑠𝐵) ∧ 𝑢𝐵) → ((𝑢(+g𝐾)𝑠) = 𝑢 ↔ (𝑢(+g𝐿)𝑠) = 𝑢))
8076, 79anbi12d 747 . . . . . . . 8 ((((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ 𝑠𝐵) ∧ 𝑢𝐵) → (((𝑠(+g𝐾)𝑢) = 𝑢 ∧ (𝑢(+g𝐾)𝑠) = 𝑢) ↔ ((𝑠(+g𝐿)𝑢) = 𝑢 ∧ (𝑢(+g𝐿)𝑠) = 𝑢)))
8180ralbidva 2985 . . . . . . 7 (((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) ∧ 𝑠𝐵) → (∀𝑢𝐵 ((𝑠(+g𝐾)𝑢) = 𝑢 ∧ (𝑢(+g𝐾)𝑠) = 𝑢) ↔ ∀𝑢𝐵 ((𝑠(+g𝐿)𝑢) = 𝑢 ∧ (𝑢(+g𝐿)𝑠) = 𝑢)))
8281rexbidva 3049 . . . . . 6 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (∃𝑠𝐵𝑢𝐵 ((𝑠(+g𝐾)𝑢) = 𝑢 ∧ (𝑢(+g𝐾)𝑠) = 𝑢) ↔ ∃𝑠𝐵𝑢𝐵 ((𝑠(+g𝐿)𝑢) = 𝑢 ∧ (𝑢(+g𝐿)𝑠) = 𝑢)))
8358raleqdv 3144 . . . . . . 7 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (∀𝑢𝐵 ((𝑠(+g𝐾)𝑢) = 𝑢 ∧ (𝑢(+g𝐾)𝑠) = 𝑢) ↔ ∀𝑢 ∈ (Base‘𝐾)((𝑠(+g𝐾)𝑢) = 𝑢 ∧ (𝑢(+g𝐾)𝑠) = 𝑢)))
8458, 83rexeqbidv 3153 . . . . . 6 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (∃𝑠𝐵𝑢𝐵 ((𝑠(+g𝐾)𝑢) = 𝑢 ∧ (𝑢(+g𝐾)𝑠) = 𝑢) ↔ ∃𝑠 ∈ (Base‘𝐾)∀𝑢 ∈ (Base‘𝐾)((𝑠(+g𝐾)𝑢) = 𝑢 ∧ (𝑢(+g𝐾)𝑠) = 𝑢)))
8564raleqdv 3144 . . . . . . 7 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (∀𝑢𝐵 ((𝑠(+g𝐿)𝑢) = 𝑢 ∧ (𝑢(+g𝐿)𝑠) = 𝑢) ↔ ∀𝑢 ∈ (Base‘𝐿)((𝑠(+g𝐿)𝑢) = 𝑢 ∧ (𝑢(+g𝐿)𝑠) = 𝑢)))
8664, 85rexeqbidv 3153 . . . . . 6 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (∃𝑠𝐵𝑢𝐵 ((𝑠(+g𝐿)𝑢) = 𝑢 ∧ (𝑢(+g𝐿)𝑠) = 𝑢) ↔ ∃𝑠 ∈ (Base‘𝐿)∀𝑢 ∈ (Base‘𝐿)((𝑠(+g𝐿)𝑢) = 𝑢 ∧ (𝑢(+g𝐿)𝑠) = 𝑢)))
8782, 84, 863bitr3d 298 . . . . 5 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (∃𝑠 ∈ (Base‘𝐾)∀𝑢 ∈ (Base‘𝐾)((𝑠(+g𝐾)𝑢) = 𝑢 ∧ (𝑢(+g𝐾)𝑠) = 𝑢) ↔ ∃𝑠 ∈ (Base‘𝐿)∀𝑢 ∈ (Base‘𝐿)((𝑠(+g𝐿)𝑢) = 𝑢 ∧ (𝑢(+g𝐿)𝑠) = 𝑢)))
8870, 87anbi12d 747 . . . 4 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → ((∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)((𝑢(+g𝐾)𝑣) ∈ (Base‘𝐾) ∧ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤))) ∧ ∃𝑠 ∈ (Base‘𝐾)∀𝑢 ∈ (Base‘𝐾)((𝑠(+g𝐾)𝑢) = 𝑢 ∧ (𝑢(+g𝐾)𝑠) = 𝑢)) ↔ (∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤))) ∧ ∃𝑠 ∈ (Base‘𝐿)∀𝑢 ∈ (Base‘𝐿)((𝑠(+g𝐿)𝑢) = 𝑢 ∧ (𝑢(+g𝐿)𝑠) = 𝑢))))
898, 9ismnd 17297 . . . 4 (𝐾 ∈ Mnd ↔ (∀𝑢 ∈ (Base‘𝐾)∀𝑣 ∈ (Base‘𝐾)((𝑢(+g𝐾)𝑣) ∈ (Base‘𝐾) ∧ ∀𝑤 ∈ (Base‘𝐾)((𝑢(+g𝐾)𝑣)(+g𝐾)𝑤) = (𝑢(+g𝐾)(𝑣(+g𝐾)𝑤))) ∧ ∃𝑠 ∈ (Base‘𝐾)∀𝑢 ∈ (Base‘𝐾)((𝑠(+g𝐾)𝑢) = 𝑢 ∧ (𝑢(+g𝐾)𝑠) = 𝑢)))
9022, 23ismnd 17297 . . . 4 (𝐿 ∈ Mnd ↔ (∀𝑢 ∈ (Base‘𝐿)∀𝑣 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣) ∈ (Base‘𝐿) ∧ ∀𝑤 ∈ (Base‘𝐿)((𝑢(+g𝐿)𝑣)(+g𝐿)𝑤) = (𝑢(+g𝐿)(𝑣(+g𝐿)𝑤))) ∧ ∃𝑠 ∈ (Base‘𝐿)∀𝑢 ∈ (Base‘𝐿)((𝑠(+g𝐿)𝑢) = 𝑢 ∧ (𝑢(+g𝐿)𝑠) = 𝑢)))
9188, 89, 903bitr4g 303 . . 3 ((𝜑 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵) → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd))
9291ex 450 . 2 (𝜑 → (∀𝑥𝐵𝑦𝐵 (𝑥(+g𝐾)𝑦) ∈ 𝐵 → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd)))
9314, 30, 92pm5.21ndd 369 1 (𝜑 → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  Mndcmnd 17294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789  ax-pow 4843
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-mgm 17242  df-sgrp 17284  df-mnd 17295
This theorem is referenced by:  mndprop  17317  mhmpropd  17341  grppropd  17437  oppgmndb  17785  cmnpropd  18202  ringpropd  18582  prdsringd  18612
  Copyright terms: Public domain W3C validator