| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oveqrspc2v | Structured version Visualization version GIF version | ||
| Description: Restricted specialization of operands, using implicit substitution. (Contributed by Mario Carneiro, 6-Dec-2014.) |
| Ref | Expression |
|---|---|
| oveqrspc2v.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
| Ref | Expression |
|---|---|
| oveqrspc2v | ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐹𝑌) = (𝑋𝐺𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveqrspc2v.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) | |
| 2 | 1 | ralrimivva 2971 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦)) |
| 3 | oveq1 6657 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥𝐹𝑦) = (𝑋𝐹𝑦)) | |
| 4 | oveq1 6657 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥𝐺𝑦) = (𝑋𝐺𝑦)) | |
| 5 | 3, 4 | eqeq12d 2637 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥𝐹𝑦) = (𝑥𝐺𝑦) ↔ (𝑋𝐹𝑦) = (𝑋𝐺𝑦))) |
| 6 | oveq2 6658 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋𝐹𝑦) = (𝑋𝐹𝑌)) | |
| 7 | oveq2 6658 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑋𝐺𝑦) = (𝑋𝐺𝑌)) | |
| 8 | 6, 7 | eqeq12d 2637 | . . 3 ⊢ (𝑦 = 𝑌 → ((𝑋𝐹𝑦) = (𝑋𝐺𝑦) ↔ (𝑋𝐹𝑌) = (𝑋𝐺𝑌))) |
| 9 | 5, 8 | rspc2v 3322 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦) → (𝑋𝐹𝑌) = (𝑋𝐺𝑌))) |
| 10 | 2, 9 | mpan9 486 | 1 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐹𝑌) = (𝑋𝐺𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 (class class class)co 6650 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 |
| This theorem is referenced by: grpidpropd 17261 gsumpropd2lem 17273 mndpropd 17316 grpsubpropd2 17521 cmnpropd 18202 ringpropd 18582 lmodprop2d 18925 lsspropd 19017 lmhmpropd 19073 lbspropd 19099 assapropd 19327 asclpropd 19346 psrplusgpropd 19606 phlpropd 20000 |
| Copyright terms: Public domain | W3C validator |