| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndpropd | Structured version Visualization version Unicode version | ||
| Description: If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a monoid iff the other one is. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| mndpropd.1 |
|
| mndpropd.2 |
|
| mndpropd.3 |
|
| Ref | Expression |
|---|---|
| mndpropd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 792 |
. . . . . 6
| |
| 2 | simprl 794 |
. . . . . . 7
| |
| 3 | mndpropd.1 |
. . . . . . . 8
| |
| 4 | 3 | ad2antrr 762 |
. . . . . . 7
|
| 5 | 2, 4 | eleqtrd 2703 |
. . . . . 6
|
| 6 | simprr 796 |
. . . . . . 7
| |
| 7 | 6, 4 | eleqtrd 2703 |
. . . . . 6
|
| 8 | eqid 2622 |
. . . . . . 7
| |
| 9 | eqid 2622 |
. . . . . . 7
| |
| 10 | 8, 9 | mndcl 17301 |
. . . . . 6
|
| 11 | 1, 5, 7, 10 | syl3anc 1326 |
. . . . 5
|
| 12 | 11, 4 | eleqtrrd 2704 |
. . . 4
|
| 13 | 12 | ralrimivva 2971 |
. . 3
|
| 14 | 13 | ex 450 |
. 2
|
| 15 | simplr 792 |
. . . . . 6
| |
| 16 | simprl 794 |
. . . . . . 7
| |
| 17 | mndpropd.2 |
. . . . . . . 8
| |
| 18 | 17 | ad2antrr 762 |
. . . . . . 7
|
| 19 | 16, 18 | eleqtrd 2703 |
. . . . . 6
|
| 20 | simprr 796 |
. . . . . . 7
| |
| 21 | 20, 18 | eleqtrd 2703 |
. . . . . 6
|
| 22 | eqid 2622 |
. . . . . . 7
| |
| 23 | eqid 2622 |
. . . . . . 7
| |
| 24 | 22, 23 | mndcl 17301 |
. . . . . 6
|
| 25 | 15, 19, 21, 24 | syl3anc 1326 |
. . . . 5
|
| 26 | mndpropd.3 |
. . . . . 6
| |
| 27 | 26 | adantlr 751 |
. . . . 5
|
| 28 | 25, 27, 18 | 3eltr4d 2716 |
. . . 4
|
| 29 | 28 | ralrimivva 2971 |
. . 3
|
| 30 | 29 | ex 450 |
. 2
|
| 31 | 26 | oveqrspc2v 6673 |
. . . . . . . . . 10
|
| 32 | 31 | adantlr 751 |
. . . . . . . . 9
|
| 33 | 32 | eleq1d 2686 |
. . . . . . . 8
|
| 34 | simplll 798 |
. . . . . . . . . . . 12
| |
| 35 | simplrl 800 |
. . . . . . . . . . . . 13
| |
| 36 | simplrr 801 |
. . . . . . . . . . . . 13
| |
| 37 | simpllr 799 |
. . . . . . . . . . . . 13
| |
| 38 | ovrspc2v 6672 |
. . . . . . . . . . . . 13
| |
| 39 | 35, 36, 37, 38 | syl21anc 1325 |
. . . . . . . . . . . 12
|
| 40 | simpr 477 |
. . . . . . . . . . . 12
| |
| 41 | 26 | oveqrspc2v 6673 |
. . . . . . . . . . . 12
|
| 42 | 34, 39, 40, 41 | syl12anc 1324 |
. . . . . . . . . . 11
|
| 43 | 34, 35, 36, 31 | syl12anc 1324 |
. . . . . . . . . . . 12
|
| 44 | 43 | oveq1d 6665 |
. . . . . . . . . . 11
|
| 45 | 42, 44 | eqtrd 2656 |
. . . . . . . . . 10
|
| 46 | ovrspc2v 6672 |
. . . . . . . . . . . . 13
| |
| 47 | 36, 40, 37, 46 | syl21anc 1325 |
. . . . . . . . . . . 12
|
| 48 | 26 | oveqrspc2v 6673 |
. . . . . . . . . . . 12
|
| 49 | 34, 35, 47, 48 | syl12anc 1324 |
. . . . . . . . . . 11
|
| 50 | 26 | oveqrspc2v 6673 |
. . . . . . . . . . . . 13
|
| 51 | 34, 36, 40, 50 | syl12anc 1324 |
. . . . . . . . . . . 12
|
| 52 | 51 | oveq2d 6666 |
. . . . . . . . . . 11
|
| 53 | 49, 52 | eqtrd 2656 |
. . . . . . . . . 10
|
| 54 | 45, 53 | eqeq12d 2637 |
. . . . . . . . 9
|
| 55 | 54 | ralbidva 2985 |
. . . . . . . 8
|
| 56 | 33, 55 | anbi12d 747 |
. . . . . . 7
|
| 57 | 56 | 2ralbidva 2988 |
. . . . . 6
|
| 58 | 3 | adantr 481 |
. . . . . . 7
|
| 59 | 58 | eleq2d 2687 |
. . . . . . . . 9
|
| 60 | 58 | raleqdv 3144 |
. . . . . . . . 9
|
| 61 | 59, 60 | anbi12d 747 |
. . . . . . . 8
|
| 62 | 58, 61 | raleqbidv 3152 |
. . . . . . 7
|
| 63 | 58, 62 | raleqbidv 3152 |
. . . . . 6
|
| 64 | 17 | adantr 481 |
. . . . . . 7
|
| 65 | 64 | eleq2d 2687 |
. . . . . . . . 9
|
| 66 | 64 | raleqdv 3144 |
. . . . . . . . 9
|
| 67 | 65, 66 | anbi12d 747 |
. . . . . . . 8
|
| 68 | 64, 67 | raleqbidv 3152 |
. . . . . . 7
|
| 69 | 64, 68 | raleqbidv 3152 |
. . . . . 6
|
| 70 | 57, 63, 69 | 3bitr3d 298 |
. . . . 5
|
| 71 | simplll 798 |
. . . . . . . . . . 11
| |
| 72 | simplr 792 |
. . . . . . . . . . 11
| |
| 73 | simpr 477 |
. . . . . . . . . . 11
| |
| 74 | 26 | oveqrspc2v 6673 |
. . . . . . . . . . 11
|
| 75 | 71, 72, 73, 74 | syl12anc 1324 |
. . . . . . . . . 10
|
| 76 | 75 | eqeq1d 2624 |
. . . . . . . . 9
|
| 77 | 26 | oveqrspc2v 6673 |
. . . . . . . . . . 11
|
| 78 | 71, 73, 72, 77 | syl12anc 1324 |
. . . . . . . . . 10
|
| 79 | 78 | eqeq1d 2624 |
. . . . . . . . 9
|
| 80 | 76, 79 | anbi12d 747 |
. . . . . . . 8
|
| 81 | 80 | ralbidva 2985 |
. . . . . . 7
|
| 82 | 81 | rexbidva 3049 |
. . . . . 6
|
| 83 | 58 | raleqdv 3144 |
. . . . . . 7
|
| 84 | 58, 83 | rexeqbidv 3153 |
. . . . . 6
|
| 85 | 64 | raleqdv 3144 |
. . . . . . 7
|
| 86 | 64, 85 | rexeqbidv 3153 |
. . . . . 6
|
| 87 | 82, 84, 86 | 3bitr3d 298 |
. . . . 5
|
| 88 | 70, 87 | anbi12d 747 |
. . . 4
|
| 89 | 8, 9 | ismnd 17297 |
. . . 4
|
| 90 | 22, 23 | ismnd 17297 |
. . . 4
|
| 91 | 88, 89, 90 | 3bitr4g 303 |
. . 3
|
| 92 | 91 | ex 450 |
. 2
|
| 93 | 14, 30, 92 | pm5.21ndd 369 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 ax-pow 4843 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-mgm 17242 df-sgrp 17284 df-mnd 17295 |
| This theorem is referenced by: mndprop 17317 mhmpropd 17341 grppropd 17437 oppgmndb 17785 cmnpropd 18202 ringpropd 18582 prdsringd 18612 |
| Copyright terms: Public domain | W3C validator |