MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsringd Structured version   Visualization version   GIF version

Theorem prdsringd 18612
Description: A product of rings is a ring. (Contributed by Mario Carneiro, 11-Mar-2015.)
Hypotheses
Ref Expression
prdsringd.y 𝑌 = (𝑆Xs𝑅)
prdsringd.i (𝜑𝐼𝑊)
prdsringd.s (𝜑𝑆𝑉)
prdsringd.r (𝜑𝑅:𝐼⟶Ring)
Assertion
Ref Expression
prdsringd (𝜑𝑌 ∈ Ring)

Proof of Theorem prdsringd
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdsringd.y . . 3 𝑌 = (𝑆Xs𝑅)
2 prdsringd.i . . 3 (𝜑𝐼𝑊)
3 prdsringd.s . . 3 (𝜑𝑆𝑉)
4 prdsringd.r . . . 4 (𝜑𝑅:𝐼⟶Ring)
5 ringgrp 18552 . . . . 5 (𝑥 ∈ Ring → 𝑥 ∈ Grp)
65ssriv 3607 . . . 4 Ring ⊆ Grp
7 fss 6056 . . . 4 ((𝑅:𝐼⟶Ring ∧ Ring ⊆ Grp) → 𝑅:𝐼⟶Grp)
84, 6, 7sylancl 694 . . 3 (𝜑𝑅:𝐼⟶Grp)
91, 2, 3, 8prdsgrpd 17525 . 2 (𝜑𝑌 ∈ Grp)
10 eqid 2622 . . . 4 (𝑆Xs(mulGrp ∘ 𝑅)) = (𝑆Xs(mulGrp ∘ 𝑅))
11 mgpf 18559 . . . . 5 (mulGrp ↾ Ring):Ring⟶Mnd
12 fco2 6059 . . . . 5 (((mulGrp ↾ Ring):Ring⟶Mnd ∧ 𝑅:𝐼⟶Ring) → (mulGrp ∘ 𝑅):𝐼⟶Mnd)
1311, 4, 12sylancr 695 . . . 4 (𝜑 → (mulGrp ∘ 𝑅):𝐼⟶Mnd)
1410, 2, 3, 13prdsmndd 17323 . . 3 (𝜑 → (𝑆Xs(mulGrp ∘ 𝑅)) ∈ Mnd)
15 eqidd 2623 . . . 4 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(mulGrp‘𝑌)))
16 eqid 2622 . . . . . 6 (mulGrp‘𝑌) = (mulGrp‘𝑌)
17 ffn 6045 . . . . . . 7 (𝑅:𝐼⟶Ring → 𝑅 Fn 𝐼)
184, 17syl 17 . . . . . 6 (𝜑𝑅 Fn 𝐼)
191, 16, 10, 2, 3, 18prdsmgp 18610 . . . . 5 (𝜑 → ((Base‘(mulGrp‘𝑌)) = (Base‘(𝑆Xs(mulGrp ∘ 𝑅))) ∧ (+g‘(mulGrp‘𝑌)) = (+g‘(𝑆Xs(mulGrp ∘ 𝑅)))))
2019simpld 475 . . . 4 (𝜑 → (Base‘(mulGrp‘𝑌)) = (Base‘(𝑆Xs(mulGrp ∘ 𝑅))))
2119simprd 479 . . . . 5 (𝜑 → (+g‘(mulGrp‘𝑌)) = (+g‘(𝑆Xs(mulGrp ∘ 𝑅))))
2221oveqdr 6674 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘(mulGrp‘𝑌)) ∧ 𝑦 ∈ (Base‘(mulGrp‘𝑌)))) → (𝑥(+g‘(mulGrp‘𝑌))𝑦) = (𝑥(+g‘(𝑆Xs(mulGrp ∘ 𝑅)))𝑦))
2315, 20, 22mndpropd 17316 . . 3 (𝜑 → ((mulGrp‘𝑌) ∈ Mnd ↔ (𝑆Xs(mulGrp ∘ 𝑅)) ∈ Mnd))
2414, 23mpbird 247 . 2 (𝜑 → (mulGrp‘𝑌) ∈ Mnd)
254adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝑅:𝐼⟶Ring)
2625ffvelrnda 6359 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → (𝑅𝑤) ∈ Ring)
27 eqid 2622 . . . . . . . . 9 (Base‘𝑌) = (Base‘𝑌)
283adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝑆𝑉)
2928adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → 𝑆𝑉)
302adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝐼𝑊)
3130adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → 𝐼𝑊)
3218adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝑅 Fn 𝐼)
3332adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → 𝑅 Fn 𝐼)
34 simplr1 1103 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → 𝑥 ∈ (Base‘𝑌))
35 simpr 477 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → 𝑤𝐼)
361, 27, 29, 31, 33, 34, 35prdsbasprj 16132 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → (𝑥𝑤) ∈ (Base‘(𝑅𝑤)))
37 simpr2 1068 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝑦 ∈ (Base‘𝑌))
3837adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → 𝑦 ∈ (Base‘𝑌))
391, 27, 29, 31, 33, 38, 35prdsbasprj 16132 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → (𝑦𝑤) ∈ (Base‘(𝑅𝑤)))
40 simpr3 1069 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝑧 ∈ (Base‘𝑌))
4140adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → 𝑧 ∈ (Base‘𝑌))
421, 27, 29, 31, 33, 41, 35prdsbasprj 16132 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → (𝑧𝑤) ∈ (Base‘(𝑅𝑤)))
43 eqid 2622 . . . . . . . . 9 (Base‘(𝑅𝑤)) = (Base‘(𝑅𝑤))
44 eqid 2622 . . . . . . . . 9 (+g‘(𝑅𝑤)) = (+g‘(𝑅𝑤))
45 eqid 2622 . . . . . . . . 9 (.r‘(𝑅𝑤)) = (.r‘(𝑅𝑤))
4643, 44, 45ringdi 18566 . . . . . . . 8 (((𝑅𝑤) ∈ Ring ∧ ((𝑥𝑤) ∈ (Base‘(𝑅𝑤)) ∧ (𝑦𝑤) ∈ (Base‘(𝑅𝑤)) ∧ (𝑧𝑤) ∈ (Base‘(𝑅𝑤)))) → ((𝑥𝑤)(.r‘(𝑅𝑤))((𝑦𝑤)(+g‘(𝑅𝑤))(𝑧𝑤))) = (((𝑥𝑤)(.r‘(𝑅𝑤))(𝑦𝑤))(+g‘(𝑅𝑤))((𝑥𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))))
4726, 36, 39, 42, 46syl13anc 1328 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → ((𝑥𝑤)(.r‘(𝑅𝑤))((𝑦𝑤)(+g‘(𝑅𝑤))(𝑧𝑤))) = (((𝑥𝑤)(.r‘(𝑅𝑤))(𝑦𝑤))(+g‘(𝑅𝑤))((𝑥𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))))
48 eqid 2622 . . . . . . . . 9 (+g𝑌) = (+g𝑌)
491, 27, 29, 31, 33, 38, 41, 48, 35prdsplusgfval 16134 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → ((𝑦(+g𝑌)𝑧)‘𝑤) = ((𝑦𝑤)(+g‘(𝑅𝑤))(𝑧𝑤)))
5049oveq2d 6666 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → ((𝑥𝑤)(.r‘(𝑅𝑤))((𝑦(+g𝑌)𝑧)‘𝑤)) = ((𝑥𝑤)(.r‘(𝑅𝑤))((𝑦𝑤)(+g‘(𝑅𝑤))(𝑧𝑤))))
51 eqid 2622 . . . . . . . . 9 (.r𝑌) = (.r𝑌)
521, 27, 29, 31, 33, 34, 38, 51, 35prdsmulrfval 16136 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → ((𝑥(.r𝑌)𝑦)‘𝑤) = ((𝑥𝑤)(.r‘(𝑅𝑤))(𝑦𝑤)))
531, 27, 29, 31, 33, 34, 41, 51, 35prdsmulrfval 16136 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → ((𝑥(.r𝑌)𝑧)‘𝑤) = ((𝑥𝑤)(.r‘(𝑅𝑤))(𝑧𝑤)))
5452, 53oveq12d 6668 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → (((𝑥(.r𝑌)𝑦)‘𝑤)(+g‘(𝑅𝑤))((𝑥(.r𝑌)𝑧)‘𝑤)) = (((𝑥𝑤)(.r‘(𝑅𝑤))(𝑦𝑤))(+g‘(𝑅𝑤))((𝑥𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))))
5547, 50, 543eqtr4d 2666 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → ((𝑥𝑤)(.r‘(𝑅𝑤))((𝑦(+g𝑌)𝑧)‘𝑤)) = (((𝑥(.r𝑌)𝑦)‘𝑤)(+g‘(𝑅𝑤))((𝑥(.r𝑌)𝑧)‘𝑤)))
5655mpteq2dva 4744 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑤𝐼 ↦ ((𝑥𝑤)(.r‘(𝑅𝑤))((𝑦(+g𝑌)𝑧)‘𝑤))) = (𝑤𝐼 ↦ (((𝑥(.r𝑌)𝑦)‘𝑤)(+g‘(𝑅𝑤))((𝑥(.r𝑌)𝑧)‘𝑤))))
57 simpr1 1067 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝑥 ∈ (Base‘𝑌))
58 ringmnd 18556 . . . . . . . . . 10 (𝑥 ∈ Ring → 𝑥 ∈ Mnd)
5958ssriv 3607 . . . . . . . . 9 Ring ⊆ Mnd
60 fss 6056 . . . . . . . . 9 ((𝑅:𝐼⟶Ring ∧ Ring ⊆ Mnd) → 𝑅:𝐼⟶Mnd)
614, 59, 60sylancl 694 . . . . . . . 8 (𝜑𝑅:𝐼⟶Mnd)
6261adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → 𝑅:𝐼⟶Mnd)
631, 27, 48, 28, 30, 62, 37, 40prdsplusgcl 17321 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑦(+g𝑌)𝑧) ∈ (Base‘𝑌))
641, 27, 28, 30, 32, 57, 63, 51prdsmulrval 16135 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑥(.r𝑌)(𝑦(+g𝑌)𝑧)) = (𝑤𝐼 ↦ ((𝑥𝑤)(.r‘(𝑅𝑤))((𝑦(+g𝑌)𝑧)‘𝑤))))
651, 27, 51, 28, 30, 25, 57, 37prdsmulrcl 18611 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑥(.r𝑌)𝑦) ∈ (Base‘𝑌))
661, 27, 51, 28, 30, 25, 57, 40prdsmulrcl 18611 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑥(.r𝑌)𝑧) ∈ (Base‘𝑌))
671, 27, 28, 30, 32, 65, 66, 48prdsplusgval 16133 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → ((𝑥(.r𝑌)𝑦)(+g𝑌)(𝑥(.r𝑌)𝑧)) = (𝑤𝐼 ↦ (((𝑥(.r𝑌)𝑦)‘𝑤)(+g‘(𝑅𝑤))((𝑥(.r𝑌)𝑧)‘𝑤))))
6856, 64, 673eqtr4d 2666 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑥(.r𝑌)(𝑦(+g𝑌)𝑧)) = ((𝑥(.r𝑌)𝑦)(+g𝑌)(𝑥(.r𝑌)𝑧)))
6943, 44, 45ringdir 18567 . . . . . . . 8 (((𝑅𝑤) ∈ Ring ∧ ((𝑥𝑤) ∈ (Base‘(𝑅𝑤)) ∧ (𝑦𝑤) ∈ (Base‘(𝑅𝑤)) ∧ (𝑧𝑤) ∈ (Base‘(𝑅𝑤)))) → (((𝑥𝑤)(+g‘(𝑅𝑤))(𝑦𝑤))(.r‘(𝑅𝑤))(𝑧𝑤)) = (((𝑥𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))(+g‘(𝑅𝑤))((𝑦𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))))
7026, 36, 39, 42, 69syl13anc 1328 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → (((𝑥𝑤)(+g‘(𝑅𝑤))(𝑦𝑤))(.r‘(𝑅𝑤))(𝑧𝑤)) = (((𝑥𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))(+g‘(𝑅𝑤))((𝑦𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))))
711, 27, 29, 31, 33, 34, 38, 48, 35prdsplusgfval 16134 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → ((𝑥(+g𝑌)𝑦)‘𝑤) = ((𝑥𝑤)(+g‘(𝑅𝑤))(𝑦𝑤)))
7271oveq1d 6665 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → (((𝑥(+g𝑌)𝑦)‘𝑤)(.r‘(𝑅𝑤))(𝑧𝑤)) = (((𝑥𝑤)(+g‘(𝑅𝑤))(𝑦𝑤))(.r‘(𝑅𝑤))(𝑧𝑤)))
731, 27, 29, 31, 33, 38, 41, 51, 35prdsmulrfval 16136 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → ((𝑦(.r𝑌)𝑧)‘𝑤) = ((𝑦𝑤)(.r‘(𝑅𝑤))(𝑧𝑤)))
7453, 73oveq12d 6668 . . . . . . 7 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → (((𝑥(.r𝑌)𝑧)‘𝑤)(+g‘(𝑅𝑤))((𝑦(.r𝑌)𝑧)‘𝑤)) = (((𝑥𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))(+g‘(𝑅𝑤))((𝑦𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))))
7570, 72, 743eqtr4d 2666 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) ∧ 𝑤𝐼) → (((𝑥(+g𝑌)𝑦)‘𝑤)(.r‘(𝑅𝑤))(𝑧𝑤)) = (((𝑥(.r𝑌)𝑧)‘𝑤)(+g‘(𝑅𝑤))((𝑦(.r𝑌)𝑧)‘𝑤)))
7675mpteq2dva 4744 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑤𝐼 ↦ (((𝑥(+g𝑌)𝑦)‘𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))) = (𝑤𝐼 ↦ (((𝑥(.r𝑌)𝑧)‘𝑤)(+g‘(𝑅𝑤))((𝑦(.r𝑌)𝑧)‘𝑤))))
771, 27, 48, 28, 30, 62, 57, 37prdsplusgcl 17321 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑥(+g𝑌)𝑦) ∈ (Base‘𝑌))
781, 27, 28, 30, 32, 77, 40, 51prdsmulrval 16135 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → ((𝑥(+g𝑌)𝑦)(.r𝑌)𝑧) = (𝑤𝐼 ↦ (((𝑥(+g𝑌)𝑦)‘𝑤)(.r‘(𝑅𝑤))(𝑧𝑤))))
791, 27, 51, 28, 30, 25, 37, 40prdsmulrcl 18611 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → (𝑦(.r𝑌)𝑧) ∈ (Base‘𝑌))
801, 27, 28, 30, 32, 66, 79, 48prdsplusgval 16133 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → ((𝑥(.r𝑌)𝑧)(+g𝑌)(𝑦(.r𝑌)𝑧)) = (𝑤𝐼 ↦ (((𝑥(.r𝑌)𝑧)‘𝑤)(+g‘(𝑅𝑤))((𝑦(.r𝑌)𝑧)‘𝑤))))
8176, 78, 803eqtr4d 2666 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → ((𝑥(+g𝑌)𝑦)(.r𝑌)𝑧) = ((𝑥(.r𝑌)𝑧)(+g𝑌)(𝑦(.r𝑌)𝑧)))
8268, 81jca 554 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑌) ∧ 𝑦 ∈ (Base‘𝑌) ∧ 𝑧 ∈ (Base‘𝑌))) → ((𝑥(.r𝑌)(𝑦(+g𝑌)𝑧)) = ((𝑥(.r𝑌)𝑦)(+g𝑌)(𝑥(.r𝑌)𝑧)) ∧ ((𝑥(+g𝑌)𝑦)(.r𝑌)𝑧) = ((𝑥(.r𝑌)𝑧)(+g𝑌)(𝑦(.r𝑌)𝑧))))
8382ralrimivvva 2972 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝑌)∀𝑦 ∈ (Base‘𝑌)∀𝑧 ∈ (Base‘𝑌)((𝑥(.r𝑌)(𝑦(+g𝑌)𝑧)) = ((𝑥(.r𝑌)𝑦)(+g𝑌)(𝑥(.r𝑌)𝑧)) ∧ ((𝑥(+g𝑌)𝑦)(.r𝑌)𝑧) = ((𝑥(.r𝑌)𝑧)(+g𝑌)(𝑦(.r𝑌)𝑧))))
8427, 16, 48, 51isring 18551 . 2 (𝑌 ∈ Ring ↔ (𝑌 ∈ Grp ∧ (mulGrp‘𝑌) ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝑌)∀𝑦 ∈ (Base‘𝑌)∀𝑧 ∈ (Base‘𝑌)((𝑥(.r𝑌)(𝑦(+g𝑌)𝑧)) = ((𝑥(.r𝑌)𝑦)(+g𝑌)(𝑥(.r𝑌)𝑧)) ∧ ((𝑥(+g𝑌)𝑦)(.r𝑌)𝑧) = ((𝑥(.r𝑌)𝑧)(+g𝑌)(𝑦(.r𝑌)𝑧)))))
859, 24, 83, 84syl3anbrc 1246 1 (𝜑𝑌 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wss 3574  cmpt 4729  cres 5116  ccom 5118   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  .rcmulr 15942  Xscprds 16106  Mndcmnd 17294  Grpcgrp 17422  mulGrpcmgp 18489  Ringcrg 18547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-prds 16108  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-mgp 18490  df-ring 18549
This theorem is referenced by:  prdscrngd  18613  pwsring  18615
  Copyright terms: Public domain W3C validator