Proof of Theorem mo2v
| Step | Hyp | Ref
| Expression |
| 1 | | df-mo 2475 |
. 2
⊢
(∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) |
| 2 | | df-eu 2474 |
. . 3
⊢
(∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
| 3 | 2 | imbi2i 326 |
. 2
⊢
((∃𝑥𝜑 → ∃!𝑥𝜑) ↔ (∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
| 4 | | alnex 1706 |
. . . . . . 7
⊢
(∀𝑥 ¬
𝜑 ↔ ¬ ∃𝑥𝜑) |
| 5 | | pm2.21 120 |
. . . . . . . 8
⊢ (¬
𝜑 → (𝜑 → 𝑥 = 𝑦)) |
| 6 | 5 | alimi 1739 |
. . . . . . 7
⊢
(∀𝑥 ¬
𝜑 → ∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| 7 | 4, 6 | sylbir 225 |
. . . . . 6
⊢ (¬
∃𝑥𝜑 → ∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| 8 | 7 | eximi 1762 |
. . . . 5
⊢
(∃𝑦 ¬
∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| 9 | 8 | 19.23bi 2061 |
. . . 4
⊢ (¬
∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| 10 | | biimp 205 |
. . . . . 6
⊢ ((𝜑 ↔ 𝑥 = 𝑦) → (𝜑 → 𝑥 = 𝑦)) |
| 11 | 10 | alimi 1739 |
. . . . 5
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| 12 | 11 | eximi 1762 |
. . . 4
⊢
(∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| 13 | 9, 12 | ja 173 |
. . 3
⊢
((∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| 14 | | nfia1 2030 |
. . . . . 6
⊢
Ⅎ𝑥(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
| 15 | | id 22 |
. . . . . . . . . 10
⊢ (𝜑 → 𝜑) |
| 16 | | ax12v 2048 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 17 | 16 | com12 32 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 18 | 15, 17 | embantd 59 |
. . . . . . . . 9
⊢ (𝜑 → ((𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 19 | 18 | spsd 2057 |
. . . . . . . 8
⊢ (𝜑 → (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 20 | 19 | ancld 576 |
. . . . . . 7
⊢ (𝜑 → (∀𝑥(𝜑 → 𝑥 = 𝑦) → (∀𝑥(𝜑 → 𝑥 = 𝑦) ∧ ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
| 21 | | albiim 1816 |
. . . . . . 7
⊢
(∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ (∀𝑥(𝜑 → 𝑥 = 𝑦) ∧ ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 22 | 20, 21 | syl6ibr 242 |
. . . . . 6
⊢ (𝜑 → (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
| 23 | 14, 22 | exlimi 2086 |
. . . . 5
⊢
(∃𝑥𝜑 → (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
| 24 | 23 | eximdv 1846 |
. . . 4
⊢
(∃𝑥𝜑 → (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
| 25 | 24 | com12 32 |
. . 3
⊢
(∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → (∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦))) |
| 26 | 13, 25 | impbii 199 |
. 2
⊢
((∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| 27 | 1, 3, 26 | 3bitri 286 |
1
⊢
(∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |