![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mptfnd | Structured version Visualization version GIF version |
Description: The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013.) (Revised by Thierry Arnoux, 10-May-2017.) |
Ref | Expression |
---|---|
mptfnd.1 | ⊢ Ⅎ𝑥𝐴 |
mptfnd.2 | ⊢ Ⅎ𝑥𝜑 |
mptfnd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
Ref | Expression |
---|---|
mptfnd | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptfnd.2 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | mptfnd.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
3 | 2 | ex 450 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐵 ∈ 𝑉)) |
4 | elex 3212 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
5 | 3, 4 | syl6 35 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐵 ∈ V)) |
6 | 1, 5 | ralrimi 2957 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ V) |
7 | mptfnd.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
8 | 7 | mptfnf 6015 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
9 | 6, 8 | sylib 208 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 Ⅎwnf 1708 ∈ wcel 1990 Ⅎwnfc 2751 ∀wral 2912 Vcvv 3200 ↦ cmpt 4729 Fn wfn 5883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-fun 5890 df-fn 5891 |
This theorem is referenced by: smflimsuplem2 41027 |
Copyright terms: Public domain | W3C validator |