Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mptssid Structured version   Visualization version   GIF version

Theorem mptssid 39450
Description: The mapping operation expressed with its actual domain. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
mptssid.1 𝑥𝐴
mptssid.2 𝐶 = {𝑥𝐴𝐵 ∈ V}
Assertion
Ref Expression
mptssid (𝑥𝐴𝐵) = (𝑥𝐶𝐵)

Proof of Theorem mptssid
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . . . . . . . 10 ((𝑥𝐴𝑦 = 𝐵) → 𝑥𝐴)
2 eqvisset 3211 . . . . . . . . . . 11 (𝑦 = 𝐵𝐵 ∈ V)
32adantl 482 . . . . . . . . . 10 ((𝑥𝐴𝑦 = 𝐵) → 𝐵 ∈ V)
41, 3jca 554 . . . . . . . . 9 ((𝑥𝐴𝑦 = 𝐵) → (𝑥𝐴𝐵 ∈ V))
5 rabid 3116 . . . . . . . . 9 (𝑥 ∈ {𝑥𝐴𝐵 ∈ V} ↔ (𝑥𝐴𝐵 ∈ V))
64, 5sylibr 224 . . . . . . . 8 ((𝑥𝐴𝑦 = 𝐵) → 𝑥 ∈ {𝑥𝐴𝐵 ∈ V})
7 mptssid.2 . . . . . . . 8 𝐶 = {𝑥𝐴𝐵 ∈ V}
86, 7syl6eleqr 2712 . . . . . . 7 ((𝑥𝐴𝑦 = 𝐵) → 𝑥𝐶)
9 simpr 477 . . . . . . 7 ((𝑥𝐴𝑦 = 𝐵) → 𝑦 = 𝐵)
108, 9jca 554 . . . . . 6 ((𝑥𝐴𝑦 = 𝐵) → (𝑥𝐶𝑦 = 𝐵))
11 mptssid.1 . . . . . . . . . . 11 𝑥𝐴
1211ssrab2f 39300 . . . . . . . . . 10 {𝑥𝐴𝐵 ∈ V} ⊆ 𝐴
137, 12eqsstri 3635 . . . . . . . . 9 𝐶𝐴
14 id 22 . . . . . . . . 9 (𝑥𝐶𝑥𝐶)
1513, 14sseldi 3601 . . . . . . . 8 (𝑥𝐶𝑥𝐴)
1615adantr 481 . . . . . . 7 ((𝑥𝐶𝑦 = 𝐵) → 𝑥𝐴)
17 simpr 477 . . . . . . 7 ((𝑥𝐶𝑦 = 𝐵) → 𝑦 = 𝐵)
1816, 17jca 554 . . . . . 6 ((𝑥𝐶𝑦 = 𝐵) → (𝑥𝐴𝑦 = 𝐵))
1910, 18impbii 199 . . . . 5 ((𝑥𝐴𝑦 = 𝐵) ↔ (𝑥𝐶𝑦 = 𝐵))
2019ax-gen 1722 . . . 4 𝑦((𝑥𝐴𝑦 = 𝐵) ↔ (𝑥𝐶𝑦 = 𝐵))
2120ax-gen 1722 . . 3 𝑥𝑦((𝑥𝐴𝑦 = 𝐵) ↔ (𝑥𝐶𝑦 = 𝐵))
22 eqopab2b 5005 . . 3 ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝑦 = 𝐵)} ↔ ∀𝑥𝑦((𝑥𝐴𝑦 = 𝐵) ↔ (𝑥𝐶𝑦 = 𝐵)))
2321, 22mpbir 221 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝑦 = 𝐵)}
24 df-mpt 4730 . 2 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
25 df-mpt 4730 . 2 (𝑥𝐶𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝑦 = 𝐵)}
2623, 24, 253eqtr4i 2654 1 (𝑥𝐴𝐵) = (𝑥𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  wal 1481   = wceq 1483  wcel 1990  wnfc 2751  {crab 2916  Vcvv 3200  {copab 4712  cmpt 4729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-mpt 4730
This theorem is referenced by:  limsupequzmpt2  39950  liminfequzmpt2  40023
  Copyright terms: Public domain W3C validator