![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mptima2 | Structured version Visualization version GIF version |
Description: Image of a function in map-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
mptima2.1 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
Ref | Expression |
---|---|
mptima2 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐶) = ran (𝑥 ∈ 𝐶 ↦ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptima 39437 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐶) = ran (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐶) = ran (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵)) |
3 | mptima2.1 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
4 | sseqin2 3817 | . . . . . 6 ⊢ (𝐶 ⊆ 𝐴 ↔ (𝐴 ∩ 𝐶) = 𝐶) | |
5 | 4 | biimpi 206 | . . . . 5 ⊢ (𝐶 ⊆ 𝐴 → (𝐴 ∩ 𝐶) = 𝐶) |
6 | 3, 5 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐴 ∩ 𝐶) = 𝐶) |
7 | 6 | mpteq1d 4738 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐵)) |
8 | 7 | rneqd 5353 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ 𝐵) = ran (𝑥 ∈ 𝐶 ↦ 𝐵)) |
9 | 2, 8 | eqtrd 2656 | 1 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) “ 𝐶) = ran (𝑥 ∈ 𝐶 ↦ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∩ cin 3573 ⊆ wss 3574 ↦ cmpt 4729 ran crn 5115 “ cima 5117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-mpt 4730 df-xp 5120 df-rel 5121 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 |
This theorem is referenced by: limsupresico 39932 limsupvaluz 39940 liminfresico 40003 |
Copyright terms: Public domain | W3C validator |