Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mptima2 Structured version   Visualization version   GIF version

Theorem mptima2 39457
Description: Image of a function in map-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
mptima2.1 (𝜑𝐶𝐴)
Assertion
Ref Expression
mptima2 (𝜑 → ((𝑥𝐴𝐵) “ 𝐶) = ran (𝑥𝐶𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem mptima2
StepHypRef Expression
1 mptima 39437 . . 3 ((𝑥𝐴𝐵) “ 𝐶) = ran (𝑥 ∈ (𝐴𝐶) ↦ 𝐵)
21a1i 11 . 2 (𝜑 → ((𝑥𝐴𝐵) “ 𝐶) = ran (𝑥 ∈ (𝐴𝐶) ↦ 𝐵))
3 mptima2.1 . . . . 5 (𝜑𝐶𝐴)
4 sseqin2 3817 . . . . . 6 (𝐶𝐴 ↔ (𝐴𝐶) = 𝐶)
54biimpi 206 . . . . 5 (𝐶𝐴 → (𝐴𝐶) = 𝐶)
63, 5syl 17 . . . 4 (𝜑 → (𝐴𝐶) = 𝐶)
76mpteq1d 4738 . . 3 (𝜑 → (𝑥 ∈ (𝐴𝐶) ↦ 𝐵) = (𝑥𝐶𝐵))
87rneqd 5353 . 2 (𝜑 → ran (𝑥 ∈ (𝐴𝐶) ↦ 𝐵) = ran (𝑥𝐶𝐵))
92, 8eqtrd 2656 1 (𝜑 → ((𝑥𝐴𝐵) “ 𝐶) = ran (𝑥𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  cin 3573  wss 3574  cmpt 4729  ran crn 5115  cima 5117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-mpt 4730  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127
This theorem is referenced by:  limsupresico  39932  limsupvaluz  39940  liminfresico  40003
  Copyright terms: Public domain W3C validator