MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreexmrid Structured version   Visualization version   GIF version

Theorem mreexmrid 16303
Description: In a Moore system whose closure operator has the exchange property, if a set is independent and an element is not in its closure, then adding the element to the set gives another independent set. Lemma 4.1.5 in [FaureFrolicher] p. 84. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mreexmrid.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mreexmrid.2 𝑁 = (mrCls‘𝐴)
mreexmrid.3 𝐼 = (mrInd‘𝐴)
mreexmrid.4 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
mreexmrid.5 (𝜑𝑆𝐼)
mreexmrid.6 (𝜑𝑌𝑋)
mreexmrid.7 (𝜑 → ¬ 𝑌 ∈ (𝑁𝑆))
Assertion
Ref Expression
mreexmrid (𝜑 → (𝑆 ∪ {𝑌}) ∈ 𝐼)
Distinct variable groups:   𝑋,𝑠,𝑦   𝑆,𝑠,𝑧,𝑦   𝜑,𝑠,𝑦,𝑧   𝑌,𝑠,𝑦,𝑧   𝑁,𝑠,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑠)   𝐼(𝑦,𝑧,𝑠)   𝑋(𝑧)

Proof of Theorem mreexmrid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mreexmrid.2 . 2 𝑁 = (mrCls‘𝐴)
2 mreexmrid.3 . 2 𝐼 = (mrInd‘𝐴)
3 mreexmrid.1 . 2 (𝜑𝐴 ∈ (Moore‘𝑋))
4 mreexmrid.5 . . . 4 (𝜑𝑆𝐼)
52, 3, 4mrissd 16296 . . 3 (𝜑𝑆𝑋)
6 mreexmrid.6 . . . 4 (𝜑𝑌𝑋)
76snssd 4340 . . 3 (𝜑 → {𝑌} ⊆ 𝑋)
85, 7unssd 3789 . 2 (𝜑 → (𝑆 ∪ {𝑌}) ⊆ 𝑋)
933ad2ant1 1082 . . . . . . . . . 10 ((𝜑𝑥𝑆𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → 𝐴 ∈ (Moore‘𝑋))
109elfvexd 6222 . . . . . . . . 9 ((𝜑𝑥𝑆𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → 𝑋 ∈ V)
11 mreexmrid.4 . . . . . . . . . 10 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
12113ad2ant1 1082 . . . . . . . . 9 ((𝜑𝑥𝑆𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
1343ad2ant1 1082 . . . . . . . . . . 11 ((𝜑𝑥𝑆𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → 𝑆𝐼)
142, 9, 13mrissd 16296 . . . . . . . . . 10 ((𝜑𝑥𝑆𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → 𝑆𝑋)
1514ssdifssd 3748 . . . . . . . . 9 ((𝜑𝑥𝑆𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → (𝑆 ∖ {𝑥}) ⊆ 𝑋)
1663ad2ant1 1082 . . . . . . . . 9 ((𝜑𝑥𝑆𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → 𝑌𝑋)
17 simp3 1063 . . . . . . . . . 10 ((𝜑𝑥𝑆𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥})))
18 difundir 3880 . . . . . . . . . . . 12 ((𝑆 ∪ {𝑌}) ∖ {𝑥}) = ((𝑆 ∖ {𝑥}) ∪ ({𝑌} ∖ {𝑥}))
19 simp2 1062 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑆𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → 𝑥𝑆)
203, 1, 5mrcssidd 16285 . . . . . . . . . . . . . . . . . 18 (𝜑𝑆 ⊆ (𝑁𝑆))
21 mreexmrid.7 . . . . . . . . . . . . . . . . . 18 (𝜑 → ¬ 𝑌 ∈ (𝑁𝑆))
2220, 21ssneldd 3606 . . . . . . . . . . . . . . . . 17 (𝜑 → ¬ 𝑌𝑆)
23223ad2ant1 1082 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑆𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → ¬ 𝑌𝑆)
24 nelneq 2725 . . . . . . . . . . . . . . . 16 ((𝑥𝑆 ∧ ¬ 𝑌𝑆) → ¬ 𝑥 = 𝑌)
2519, 23, 24syl2anc 693 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑆𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → ¬ 𝑥 = 𝑌)
26 elsni 4194 . . . . . . . . . . . . . . 15 (𝑥 ∈ {𝑌} → 𝑥 = 𝑌)
2725, 26nsyl 135 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑆𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → ¬ 𝑥 ∈ {𝑌})
28 difsnb 4337 . . . . . . . . . . . . . 14 𝑥 ∈ {𝑌} ↔ ({𝑌} ∖ {𝑥}) = {𝑌})
2927, 28sylib 208 . . . . . . . . . . . . 13 ((𝜑𝑥𝑆𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → ({𝑌} ∖ {𝑥}) = {𝑌})
3029uneq2d 3767 . . . . . . . . . . . 12 ((𝜑𝑥𝑆𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → ((𝑆 ∖ {𝑥}) ∪ ({𝑌} ∖ {𝑥})) = ((𝑆 ∖ {𝑥}) ∪ {𝑌}))
3118, 30syl5eq 2668 . . . . . . . . . . 11 ((𝜑𝑥𝑆𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → ((𝑆 ∪ {𝑌}) ∖ {𝑥}) = ((𝑆 ∖ {𝑥}) ∪ {𝑌}))
3231fveq2d 6195 . . . . . . . . . 10 ((𝜑𝑥𝑆𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥})) = (𝑁‘((𝑆 ∖ {𝑥}) ∪ {𝑌})))
3317, 32eleqtrd 2703 . . . . . . . . 9 ((𝜑𝑥𝑆𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → 𝑥 ∈ (𝑁‘((𝑆 ∖ {𝑥}) ∪ {𝑌})))
341, 2, 9, 13, 19ismri2dad 16297 . . . . . . . . 9 ((𝜑𝑥𝑆𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))
3510, 12, 15, 16, 33, 34mreexd 16302 . . . . . . . 8 ((𝜑𝑥𝑆𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → 𝑌 ∈ (𝑁‘((𝑆 ∖ {𝑥}) ∪ {𝑥})))
36213ad2ant1 1082 . . . . . . . . 9 ((𝜑𝑥𝑆𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → ¬ 𝑌 ∈ (𝑁𝑆))
37 undif1 4043 . . . . . . . . . . 11 ((𝑆 ∖ {𝑥}) ∪ {𝑥}) = (𝑆 ∪ {𝑥})
3819snssd 4340 . . . . . . . . . . . 12 ((𝜑𝑥𝑆𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → {𝑥} ⊆ 𝑆)
39 ssequn2 3786 . . . . . . . . . . . 12 ({𝑥} ⊆ 𝑆 ↔ (𝑆 ∪ {𝑥}) = 𝑆)
4038, 39sylib 208 . . . . . . . . . . 11 ((𝜑𝑥𝑆𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → (𝑆 ∪ {𝑥}) = 𝑆)
4137, 40syl5eq 2668 . . . . . . . . . 10 ((𝜑𝑥𝑆𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → ((𝑆 ∖ {𝑥}) ∪ {𝑥}) = 𝑆)
4241fveq2d 6195 . . . . . . . . 9 ((𝜑𝑥𝑆𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → (𝑁‘((𝑆 ∖ {𝑥}) ∪ {𝑥})) = (𝑁𝑆))
4336, 42neleqtrrd 2723 . . . . . . . 8 ((𝜑𝑥𝑆𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) → ¬ 𝑌 ∈ (𝑁‘((𝑆 ∖ {𝑥}) ∪ {𝑥})))
4435, 43pm2.65i 185 . . . . . . 7 ¬ (𝜑𝑥𝑆𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥})))
45 df-3an 1039 . . . . . . 7 ((𝜑𝑥𝑆𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))) ↔ ((𝜑𝑥𝑆) ∧ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥}))))
4644, 45mtbi 312 . . . . . 6 ¬ ((𝜑𝑥𝑆) ∧ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥})))
4746imnani 439 . . . . 5 ((𝜑𝑥𝑆) → ¬ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥})))
4847adantlr 751 . . . 4 (((𝜑𝑥 ∈ (𝑆 ∪ {𝑌})) ∧ 𝑥𝑆) → ¬ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥})))
4926adantl 482 . . . . . 6 (((𝜑𝑥 ∈ (𝑆 ∪ {𝑌})) ∧ 𝑥 ∈ {𝑌}) → 𝑥 = 𝑌)
5021ad2antrr 762 . . . . . 6 (((𝜑𝑥 ∈ (𝑆 ∪ {𝑌})) ∧ 𝑥 ∈ {𝑌}) → ¬ 𝑌 ∈ (𝑁𝑆))
5149, 50eqneltrd 2720 . . . . 5 (((𝜑𝑥 ∈ (𝑆 ∪ {𝑌})) ∧ 𝑥 ∈ {𝑌}) → ¬ 𝑥 ∈ (𝑁𝑆))
5249sneqd 4189 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝑆 ∪ {𝑌})) ∧ 𝑥 ∈ {𝑌}) → {𝑥} = {𝑌})
5352difeq2d 3728 . . . . . . . 8 (((𝜑𝑥 ∈ (𝑆 ∪ {𝑌})) ∧ 𝑥 ∈ {𝑌}) → ((𝑆 ∪ {𝑌}) ∖ {𝑥}) = ((𝑆 ∪ {𝑌}) ∖ {𝑌}))
54 difun2 4048 . . . . . . . 8 ((𝑆 ∪ {𝑌}) ∖ {𝑌}) = (𝑆 ∖ {𝑌})
5553, 54syl6eq 2672 . . . . . . 7 (((𝜑𝑥 ∈ (𝑆 ∪ {𝑌})) ∧ 𝑥 ∈ {𝑌}) → ((𝑆 ∪ {𝑌}) ∖ {𝑥}) = (𝑆 ∖ {𝑌}))
56 difsnb 4337 . . . . . . . . 9 𝑌𝑆 ↔ (𝑆 ∖ {𝑌}) = 𝑆)
5722, 56sylib 208 . . . . . . . 8 (𝜑 → (𝑆 ∖ {𝑌}) = 𝑆)
5857ad2antrr 762 . . . . . . 7 (((𝜑𝑥 ∈ (𝑆 ∪ {𝑌})) ∧ 𝑥 ∈ {𝑌}) → (𝑆 ∖ {𝑌}) = 𝑆)
5955, 58eqtrd 2656 . . . . . 6 (((𝜑𝑥 ∈ (𝑆 ∪ {𝑌})) ∧ 𝑥 ∈ {𝑌}) → ((𝑆 ∪ {𝑌}) ∖ {𝑥}) = 𝑆)
6059fveq2d 6195 . . . . 5 (((𝜑𝑥 ∈ (𝑆 ∪ {𝑌})) ∧ 𝑥 ∈ {𝑌}) → (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥})) = (𝑁𝑆))
6151, 60neleqtrrd 2723 . . . 4 (((𝜑𝑥 ∈ (𝑆 ∪ {𝑌})) ∧ 𝑥 ∈ {𝑌}) → ¬ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥})))
62 simpr 477 . . . . 5 ((𝜑𝑥 ∈ (𝑆 ∪ {𝑌})) → 𝑥 ∈ (𝑆 ∪ {𝑌}))
63 elun 3753 . . . . 5 (𝑥 ∈ (𝑆 ∪ {𝑌}) ↔ (𝑥𝑆𝑥 ∈ {𝑌}))
6462, 63sylib 208 . . . 4 ((𝜑𝑥 ∈ (𝑆 ∪ {𝑌})) → (𝑥𝑆𝑥 ∈ {𝑌}))
6548, 61, 64mpjaodan 827 . . 3 ((𝜑𝑥 ∈ (𝑆 ∪ {𝑌})) → ¬ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥})))
6665ralrimiva 2966 . 2 (𝜑 → ∀𝑥 ∈ (𝑆 ∪ {𝑌}) ¬ 𝑥 ∈ (𝑁‘((𝑆 ∪ {𝑌}) ∖ {𝑥})))
671, 2, 3, 8, 66ismri2dd 16294 1 (𝜑 → (𝑆 ∪ {𝑌}) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  cdif 3571  cun 3572  wss 3574  𝒫 cpw 4158  {csn 4177  cfv 5888  Moorecmre 16242  mrClscmrc 16243  mrIndcmri 16244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-mre 16246  df-mrc 16247  df-mri 16248
This theorem is referenced by:  mreexexlem2d  16305
  Copyright terms: Public domain W3C validator