Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mstaval Structured version   Visualization version   GIF version

Theorem mstaval 31441
Description: Value of the set of statements. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mstaval.r 𝑅 = (mStRed‘𝑇)
mstaval.s 𝑆 = (mStat‘𝑇)
Assertion
Ref Expression
mstaval 𝑆 = ran 𝑅

Proof of Theorem mstaval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 mstaval.s . 2 𝑆 = (mStat‘𝑇)
2 fveq2 6191 . . . . . 6 (𝑡 = 𝑇 → (mStRed‘𝑡) = (mStRed‘𝑇))
3 mstaval.r . . . . . 6 𝑅 = (mStRed‘𝑇)
42, 3syl6eqr 2674 . . . . 5 (𝑡 = 𝑇 → (mStRed‘𝑡) = 𝑅)
54rneqd 5353 . . . 4 (𝑡 = 𝑇 → ran (mStRed‘𝑡) = ran 𝑅)
6 df-msta 31392 . . . 4 mStat = (𝑡 ∈ V ↦ ran (mStRed‘𝑡))
7 fvex 6201 . . . . . 6 (mStRed‘𝑇) ∈ V
83, 7eqeltri 2697 . . . . 5 𝑅 ∈ V
98rnex 7100 . . . 4 ran 𝑅 ∈ V
105, 6, 9fvmpt 6282 . . 3 (𝑇 ∈ V → (mStat‘𝑇) = ran 𝑅)
11 rn0 5377 . . . . 5 ran ∅ = ∅
1211eqcomi 2631 . . . 4 ∅ = ran ∅
13 fvprc 6185 . . . 4 𝑇 ∈ V → (mStat‘𝑇) = ∅)
14 fvprc 6185 . . . . . 6 𝑇 ∈ V → (mStRed‘𝑇) = ∅)
153, 14syl5eq 2668 . . . . 5 𝑇 ∈ V → 𝑅 = ∅)
1615rneqd 5353 . . . 4 𝑇 ∈ V → ran 𝑅 = ran ∅)
1712, 13, 163eqtr4a 2682 . . 3 𝑇 ∈ V → (mStat‘𝑇) = ran 𝑅)
1810, 17pm2.61i 176 . 2 (mStat‘𝑇) = ran 𝑅
191, 18eqtri 2644 1 𝑆 = ran 𝑅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1483  wcel 1990  Vcvv 3200  c0 3915  ran crn 5115  cfv 5888  mStRedcmsr 31371  mStatcmsta 31372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-msta 31392
This theorem is referenced by:  msrid  31442  msrfo  31443  mstapst  31444  elmsta  31445
  Copyright terms: Public domain W3C validator