Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mvrsval Structured version   Visualization version   GIF version

Theorem mvrsval 31402
Description: The set of variables in an expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mvrsval.v 𝑉 = (mVR‘𝑇)
mvrsval.e 𝐸 = (mEx‘𝑇)
mvrsval.w 𝑊 = (mVars‘𝑇)
Assertion
Ref Expression
mvrsval (𝑋𝐸 → (𝑊𝑋) = (ran (2nd𝑋) ∩ 𝑉))

Proof of Theorem mvrsval
Dummy variables 𝑡 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mvrsval.w . . 3 𝑊 = (mVars‘𝑇)
2 elfvex 6221 . . . . 5 (𝑋 ∈ (mEx‘𝑇) → 𝑇 ∈ V)
3 mvrsval.e . . . . 5 𝐸 = (mEx‘𝑇)
42, 3eleq2s 2719 . . . 4 (𝑋𝐸𝑇 ∈ V)
5 fveq2 6191 . . . . . . 7 (𝑡 = 𝑇 → (mEx‘𝑡) = (mEx‘𝑇))
65, 3syl6eqr 2674 . . . . . 6 (𝑡 = 𝑇 → (mEx‘𝑡) = 𝐸)
7 fveq2 6191 . . . . . . . 8 (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇))
8 mvrsval.v . . . . . . . 8 𝑉 = (mVR‘𝑇)
97, 8syl6eqr 2674 . . . . . . 7 (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉)
109ineq2d 3814 . . . . . 6 (𝑡 = 𝑇 → (ran (2nd𝑒) ∩ (mVR‘𝑡)) = (ran (2nd𝑒) ∩ 𝑉))
116, 10mpteq12dv 4733 . . . . 5 (𝑡 = 𝑇 → (𝑒 ∈ (mEx‘𝑡) ↦ (ran (2nd𝑒) ∩ (mVR‘𝑡))) = (𝑒𝐸 ↦ (ran (2nd𝑒) ∩ 𝑉)))
12 df-mvrs 31386 . . . . 5 mVars = (𝑡 ∈ V ↦ (𝑒 ∈ (mEx‘𝑡) ↦ (ran (2nd𝑒) ∩ (mVR‘𝑡))))
13 fvex 6201 . . . . . . 7 (mEx‘𝑇) ∈ V
143, 13eqeltri 2697 . . . . . 6 𝐸 ∈ V
1514mptex 6486 . . . . 5 (𝑒𝐸 ↦ (ran (2nd𝑒) ∩ 𝑉)) ∈ V
1611, 12, 15fvmpt 6282 . . . 4 (𝑇 ∈ V → (mVars‘𝑇) = (𝑒𝐸 ↦ (ran (2nd𝑒) ∩ 𝑉)))
174, 16syl 17 . . 3 (𝑋𝐸 → (mVars‘𝑇) = (𝑒𝐸 ↦ (ran (2nd𝑒) ∩ 𝑉)))
181, 17syl5eq 2668 . 2 (𝑋𝐸𝑊 = (𝑒𝐸 ↦ (ran (2nd𝑒) ∩ 𝑉)))
19 fveq2 6191 . . . . 5 (𝑒 = 𝑋 → (2nd𝑒) = (2nd𝑋))
2019rneqd 5353 . . . 4 (𝑒 = 𝑋 → ran (2nd𝑒) = ran (2nd𝑋))
2120ineq1d 3813 . . 3 (𝑒 = 𝑋 → (ran (2nd𝑒) ∩ 𝑉) = (ran (2nd𝑋) ∩ 𝑉))
2221adantl 482 . 2 ((𝑋𝐸𝑒 = 𝑋) → (ran (2nd𝑒) ∩ 𝑉) = (ran (2nd𝑋) ∩ 𝑉))
23 id 22 . 2 (𝑋𝐸𝑋𝐸)
24 fvex 6201 . . . . 5 (2nd𝑋) ∈ V
2524rnex 7100 . . . 4 ran (2nd𝑋) ∈ V
2625inex1 4799 . . 3 (ran (2nd𝑋) ∩ 𝑉) ∈ V
2726a1i 11 . 2 (𝑋𝐸 → (ran (2nd𝑋) ∩ 𝑉) ∈ V)
2818, 22, 23, 27fvmptd 6288 1 (𝑋𝐸 → (𝑊𝑋) = (ran (2nd𝑋) ∩ 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  cin 3573  cmpt 4729  ran crn 5115  cfv 5888  2nd c2nd 7167  mVRcmvar 31358  mExcmex 31364  mVarscmvrs 31366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-mvrs 31386
This theorem is referenced by:  mvrsfpw  31403  msubvrs  31457
  Copyright terms: Public domain W3C validator